已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Wax Deposits for Crude Pipelines Using Time-Dependent Data Mining

粒子群优化 管道运输 计算机科学 管道(软件) 人工神经网络 清管 数据挖掘 算法 人工智能 工程类 环境工程 程序设计语言
作者
Bo Yao,Jiaqi Chen,Chuanxian Li,Fei Yang,Guangyu Sun,Yingda Lu
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-22 被引量:3
标识
DOI:10.2118/205374-pa
摘要

Summary Accurately predicting wax deposits in a crude pipeline through empirical formulas or numerical modeling is unreliable because of the incomplete mechanism and the time-dependent unsteady actual operating conditions. With the help of the data collected by the supervisory control and data acquisition system of pipelines, wax deposit prediction is made possible by developing the time-dependent data mining method. In this article, the data from a typical long-distance crude pipeline in China operating over a 4-year time period was investigated. The inlet temperature prediction was first conducted by developing the long short-term memory (LSTM)-recurrent neural networks (RNNs) model, during which the feature sequencing, overfitting problems, and optimal hyperparameters were fully considered. Because of the time sequence cell, the accuracy of the LSTM-RNN model, as well as the time consumption, is much better than the RNN model when dealing with a great deal of data over a long period of time. Taking the inlet temperature prediction results as input features, the prediction model of average wax deposit thickness was established based on the backpropagation (BP) neural network and optimized by the particle swarm optimization (PSO), chaos particle swarm optimization (CPSO), and adaptive chaos particle swarm optimization (ACPSO) algorithms. The conclusions and associated algorithm from this article help to determine the reasonable pigging circle of long-distance pipelines practically. It could also be applied to guide the wax deposit prediction in the wellbore or oil-gatheringpipes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助Dinah采纳,获得10
2秒前
3秒前
聪慧夜柳发布了新的文献求助10
3秒前
kingwill应助皮皮蟹采纳,获得20
6秒前
内向的飞松完成签到,获得积分10
6秒前
JeromineJade完成签到,获得积分10
6秒前
12秒前
12秒前
小丸子完成签到,获得积分10
12秒前
sjyu1985完成签到 ,获得积分10
14秒前
qhq完成签到 ,获得积分10
15秒前
小丸子发布了新的文献求助10
17秒前
举个栗子8完成签到 ,获得积分10
17秒前
嘘嘘发布了新的文献求助10
18秒前
19秒前
和谐绍辉发布了新的文献求助10
19秒前
光头饼发布了新的文献求助10
24秒前
爱学习的小霸完成签到,获得积分10
25秒前
27秒前
烁果累累完成签到 ,获得积分10
27秒前
27秒前
和谐绍辉完成签到,获得积分10
28秒前
光头饼完成签到,获得积分10
31秒前
33秒前
Chance完成签到 ,获得积分10
36秒前
37秒前
笑笑发布了新的文献求助10
40秒前
桐桐应助执着的谷蕊采纳,获得10
41秒前
清蒸小朋友完成签到,获得积分10
43秒前
Wish完成签到,获得积分10
44秒前
诸葛御风给面条的求助进行了留言
45秒前
45秒前
47秒前
小马甲应助疯狂的莫言采纳,获得10
49秒前
缥缈项链完成签到,获得积分10
50秒前
momo123完成签到 ,获得积分10
51秒前
GONGLI完成签到 ,获得积分10
52秒前
57秒前
共享精神应助痴情的若剑采纳,获得10
59秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795430
求助须知:如何正确求助?哪些是违规求助? 3340416
关于积分的说明 10300140
捐赠科研通 3056953
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805375
科研通“疑难数据库(出版商)”最低求助积分说明 762491