Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration

材料科学 细胞生物学 再生(生物学) 静电纺丝 巨噬细胞极化 生物医学工程 血管生成 3d打印 纳米纤维 体内 化学 巨噬细胞 体外 纳米技术 癌症研究 生物 医学 生物化学 复合材料 生物技术 聚合物
作者
Xingzhi Liu,Mimi Chen,Junchao Luo,Huan Zhao,Xichao Zhou,Qiaoli Gu,Huilin Yang,Xuesong Zhu,Wenguo Cui,Qin Shi
出处
期刊:Biomaterials [Elsevier BV]
卷期号:276: 121037-121037 被引量:132
标识
DOI:10.1016/j.biomaterials.2021.121037
摘要

Three-dimension (3D)-printed bioscaffolds are precise and personalized for bone regeneration. However, customized 3D scaffolds may activate the immune response in vivo and consequently impede bone formation. In this study, with layer-by-layer deposition and electrospinning technology to control the physical structure, 3D-printed PCL scaffolds with PLLA electrospun microfibrous (3D-M-EF) and nanofibrous (3D-N-EF) composites were constructed, and their immunomodulatory effect and the subsequent osteogenic effects were explored. Compared to 3D-N-EF scaffolds, 3D-M-EF scaffolds polarized more RAW264.7 cells toward alternatively activated macrophages (M2), as demonstrated by increased M2 and deceased classically activated macrophage (M1) phenotypic marker expression in the cells. In addition, the 3D-M-EF scaffolds shifted RAW264.7 cells to the M2 phenotype through PI3K/AKT signaling and enhanced VEGF and BMP-2 expression. Conditional medium from the RAW264.7 cells seeded in 3D-M-EF scaffolds promoted osteogenesis of MC3T3-E1 cells. Furthermore, in vivo study of repairing rat calvarial defects, the 3D-M-EF scaffolds increased the polarization of M2 macrophages, enhanced angiogenesis, and accelerated new bone formation. Collectively, our data suggested that well-designed 3D-M-EF scaffolds are favorable for osteogenesis through regulation of M2 polarization. Therefore, it is potential to utilize the physical structure of 3D-printed scaffolds to manipulate the osteoimmune environment to promote bone regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
岑忘幽完成签到,获得积分10
刚刚
1秒前
姜露萍完成签到,获得积分10
1秒前
2秒前
2秒前
cc发布了新的文献求助10
3秒前
9202211125完成签到,获得积分10
4秒前
yyk应助修辛采纳,获得10
4秒前
Song发布了新的文献求助30
4秒前
李爱国应助Crystal采纳,获得10
5秒前
Stephendo发布了新的文献求助10
6秒前
太叔静竹发布了新的文献求助10
6秒前
7秒前
嘻嘻嘻发布了新的文献求助10
7秒前
7秒前
烟花应助小钢炮采纳,获得10
7秒前
8秒前
8秒前
9秒前
蝈蝈发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
爱吃橙子完成签到 ,获得积分10
11秒前
wenxian发布了新的文献求助10
12秒前
嘻嘻嘻完成签到,获得积分20
13秒前
虞剑发布了新的文献求助10
14秒前
Liujialei发布了新的文献求助10
14秒前
Jackie完成签到 ,获得积分10
14秒前
核桃发布了新的文献求助10
14秒前
考拉发布了新的文献求助10
14秒前
yyy发布了新的文献求助10
14秒前
赘婿应助689采纳,获得30
15秒前
zhtgang发布了新的文献求助10
15秒前
15秒前
烟花应助1234采纳,获得10
16秒前
16秒前
ZWK发布了新的文献求助10
16秒前
Hello应助嘻嘻嘻采纳,获得10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4233466
求助须知:如何正确求助?哪些是违规求助? 3766944
关于积分的说明 11835578
捐赠科研通 3425258
什么是DOI,文献DOI怎么找? 1879794
邀请新用户注册赠送积分活动 932544
科研通“疑难数据库(出版商)”最低求助积分说明 839704