Matching IRT Models to Patient-Reported Outcomes Constructs: The Graded Response and Log-Logistic Models for Scaling Depression

项目反应理论 心理测量学 构造(python库) 逻辑回归 匹配(统计) 心理学 缩放比例 认知 多维标度 计量经济学 认知心理学 度量(数据仓库) 统计
作者
Steven P. Reise,Huiqin Du,Emily Wong,Anne S. Hubbard,Mark G. Haviland
出处
期刊:Psychometrika [Springer Science+Business Media]
卷期号:86 (3): 800-824 被引量:9
标识
DOI:10.1007/s11336-021-09802-0
摘要

Item response theory (IRT) model applications extend well beyond cognitive ability testing, and various patient-reported outcomes (PRO) measures are among the more prominent examples. PRO (and like) constructs differ from cognitive ability constructs in many ways, and these differences have model fitting implications. With a few notable exceptions, however, most IRT applications to PRO constructs rely on traditional IRT models, such as the graded response model. We review some notable differences between cognitive and PRO constructs and how these differences can present challenges for traditional IRT model applications. We then apply two models (the traditional graded response model and an alternative log-logistic model) to depression measure data drawn from the Patient-Reported Outcomes Measurement Information System project. We do not claim that one model is "a better fit" or more "valid" than the other; rather, we show that the log-logistic model may be more consistent with the construct of depression as a unipolar phenomenon. Clearly, the graded response and log-logistic models can lead to different conclusions about the psychometrics of an instrument and the scaling of individual differences. We underscore, too, that, in general, explorations of which model may be more appropriate cannot be decided only by fit index comparisons; these decisions may require the integration of psychometrics with theory and research findings on the construct of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吧啦呼完成签到,获得积分10
1秒前
征途的向雁完成签到,获得积分10
1秒前
sdl发布了新的文献求助10
2秒前
2秒前
anny.white完成签到,获得积分10
2秒前
TMY发布了新的文献求助10
3秒前
4秒前
TT完成签到,获得积分10
4秒前
4秒前
DHY完成签到,获得积分10
4秒前
CodeCraft应助LFY采纳,获得30
4秒前
TG_FY完成签到,获得积分10
5秒前
duanhahaha发布了新的文献求助10
5秒前
xhm998完成签到,获得积分20
5秒前
简直乖惨了完成签到 ,获得积分10
5秒前
pan完成签到,获得积分10
5秒前
6秒前
朴素的月光完成签到,获得积分10
6秒前
6秒前
nn发布了新的文献求助10
8秒前
bias完成签到,获得积分10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
9秒前
只A不B应助科研通管家采纳,获得30
9秒前
sens发布了新的文献求助10
9秒前
xhm998发布了新的文献求助10
9秒前
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
10秒前
wqy发布了新的文献求助10
10秒前
所所应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
万里发布了新的文献求助50
10秒前
田様应助科研通管家采纳,获得10
10秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820351
求助须知:如何正确求助?哪些是违规求助? 3363257
关于积分的说明 10422060
捐赠科研通 3081685
什么是DOI,文献DOI怎么找? 1695190
邀请新用户注册赠送积分活动 814957
科研通“疑难数据库(出版商)”最低求助积分说明 768692