Artificial Neural Network Applied to Predicting the Surface Tension of Acoustically Levitated Droplets of Supercooling Nanofluids

材料科学 人工神经网络 纳米流体 振荡(细胞信号) 色散(光学) 机械 氧化物 变形(气象学) 表面张力 复合材料 热力学 生物系统 过冷 纳米颗粒 纳米技术 人工智能 光学 计算机科学 物理 化学 生物 冶金 生物化学
作者
Bobo Wu,Yudong Liu,Dengshi Wang,Nan Jiang,Jie Zhang,Xiaorong Wang,Yuxin Xiao
出处
期刊:NANO [World Scientific]
卷期号:16 (09)
标识
DOI:10.1142/s1793292021501083
摘要

Droplet oscillation method is a noncontact experimental approach, which can be used to measure the surface tension of acoustically levitated droplet. In this paper, we obtained huge amounts of experimental data of deionized water and water-based graphene oxide nanofluids within the temperature range of [Formula: see text]8.2–[Formula: see text]C. Based on the experimental data, we analyzed the influence of droplet’s deformation and frequency shift phenomenon on the surface tension of levitated droplet. Eight parameters that strongly correlate with surface tension were found and used as input neurons of artificial neural network model to predict the surface tension of supercooling graphene oxide nanofluids. The experimental data of nonsupercooling graphene oxide nanofluids were used as training set to optimize artificial neural network model, and that of deionized water were served as validation set, which was used to verify the predictive ability of artificial neural network model. The root mean square error of the optimized artificial neural network model to validation set is only 0.2558[Formula: see text]mN/m, and the prediction values of the surface tension of supercooling deionized water were in good agreement with the theoretical values calculated by Vargaftik equation, which indicates that artificial neural network model can deal well with the complex nonlinear relationship. Afterwards, we successfully predicted the surface tension of supercooling nanofluids by means of the optimized artificial neural network model and obviously reduced the dispersion and deviation caused by droplet deformation and other problems during oscillation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wly1111完成签到,获得积分10
1秒前
1秒前
Jasper应助gty采纳,获得10
2秒前
3秒前
6秒前
8秒前
8秒前
9秒前
ddddddd完成签到,获得积分10
9秒前
52Hertz发布了新的文献求助10
10秒前
10秒前
小刘哥加油完成签到 ,获得积分10
11秒前
11秒前
DRszy发布了新的文献求助10
11秒前
顺利毕业发布了新的文献求助10
12秒前
孙燕应助失眠的惜天采纳,获得10
12秒前
ding应助zz采纳,获得10
13秒前
上官若男应助Re采纳,获得10
13秒前
14秒前
Anyixx完成签到 ,获得积分10
15秒前
开朗的钻石完成签到,获得积分10
15秒前
星空发布了新的文献求助10
16秒前
轻语发布了新的文献求助10
16秒前
16秒前
19秒前
风筝鱼发布了新的文献求助200
20秒前
www999发布了新的文献求助10
21秒前
21秒前
WY发布了新的文献求助30
22秒前
SciGPT应助李英俊采纳,获得10
22秒前
8R60d8应助RichieXU采纳,获得10
22秒前
zz发布了新的文献求助10
24秒前
coolru发布了新的文献求助10
26秒前
猪猪hero应助科研通管家采纳,获得10
27秒前
旧辞应助科研通管家采纳,获得10
27秒前
猪猪hero应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
27秒前
情怀应助科研通管家采纳,获得10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842887
求助须知:如何正确求助?哪些是违规求助? 3384898
关于积分的说明 10538020
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774149