State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression

健康状况 支持向量机 电池(电) 计算机科学 均方误差 人工智能 统计 数学 功率(物理) 量子力学 物理
作者
Yajun Zhang,Yajie Liu,Wang Jia,Tao Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:239: 121986-121986 被引量:105
标识
DOI:10.1016/j.energy.2021.121986
摘要

Accurate state-of-health (SOH) estimation for lithium-ion batteries is of great significance for future intelligent battery management systems. This study proposes a novel method combining voltage-capacity (VC)-model-based incremental capacity analysis (ICA) with support vector regression (SVR) for battery SOH estimation. For accurate and efficient capture of IC curves, 18 VC models are first compared, and then, suitable models are selected for two types of batteries with different chemistries, enabling multitype health features to be obtained by parameterizing the VC models. After correlation analysis of these extracted health features with the reference battery capacity, the SVR algorithm is adopted to construct SOH estimation models. Finally, four aging datasets are employed for validation of the proposed method. The experimental results show that the SVR models achieve high accuracy in SOH estimation, i.e., the respective mean absolute errors (MAEs) and root mean square errors (RMSEs) of all batteries are limited to within 1.1%. Moreover, the method is robust against different initial aging statuses and cycle conditions of the batteries: after migration and fine-tuning, both the MAEs and RMSEs can be confined to within 2.3% by utilizing the established SVR models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hualin发布了新的文献求助20
1秒前
2秒前
CipherSage应助Suge采纳,获得10
2秒前
2秒前
爱听歌土豆完成签到,获得积分10
2秒前
2秒前
青天白日完成签到,获得积分10
3秒前
3秒前
怕黑冰烟完成签到 ,获得积分10
3秒前
Owen应助劣根采纳,获得10
3秒前
曼曼发布了新的文献求助10
4秒前
恺恺完成签到,获得积分10
4秒前
科研通AI5应助小小橙采纳,获得10
5秒前
曹晓龙完成签到,获得积分20
5秒前
6秒前
优雅山柏完成签到,获得积分10
6秒前
gaw2008完成签到,获得积分10
6秒前
6秒前
6秒前
阿巴斯发布了新的文献求助10
7秒前
7秒前
7秒前
DXDXJX完成签到,获得积分10
8秒前
每天读顶刊完成签到,获得积分20
8秒前
8秒前
8秒前
frenchfriespie完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
THEHP1发布了新的文献求助10
11秒前
科目三应助zwl采纳,获得10
11秒前
bkagyin应助蜜CC采纳,获得10
11秒前
luofeng完成签到,获得积分10
11秒前
哎哎发布了新的文献求助10
11秒前
谭凯文完成签到 ,获得积分10
11秒前
567完成签到,获得积分20
11秒前
后来应助落寞的代萱采纳,获得10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804665
求助须知:如何正确求助?哪些是违规求助? 3349505
关于积分的说明 10344809
捐赠科研通 3065569
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808727
科研通“疑难数据库(出版商)”最低求助积分说明 764723