Fluid-Thermal Topology Optimization of Gas Turbine Blade Internal Cooling Ducts

压力降 涡轮叶片 机械 传热 计算流体力学 导管(解剖学) 形状优化 内部流动 纵横比(航空) 涡流器 热的 材料科学 流体力学 拓扑(电路) 几何学 机械工程 湍流 涡轮机 流量(数学) 工程类 数学 结构工程 物理 雷诺数 热力学 有限元法 电气工程 病理 复合材料 医学
作者
Shinjan Ghosh,Erik Fernández,Jayanta Kapat
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:144 (5) 被引量:19
标识
DOI:10.1115/1.4053042
摘要

Abstract Topology optimization uses a variable permeability approach to manipulate flow geometries. Such a method has been employed in the current work to modify the geometric configuration of internal cooling ducts by manipulating the distribution of material blockage. A modified version of the OpenFOAM solver AdjointShapeOptimizationFOAM has been used to optimize the flow-path of a serpentine channel and high aspect ratio rectangular ducts, with increase in heat transfer and reduction in pressure drop as the objective functions. These duct shapes are typically used as internal cooling channels in gas turbine blades for sustaining the blade material at high inlet temperatures. The serpentine channel shape is initially topologically optimized, the fluid path from which is post-processed and re-simulated in star-ccm+. The end result has an improvement in thermal performance efficiency (η) by 24%. Separation regions are found to be reduced when compared to the original baseline. The second test geometry is a high aspect ratio rectangular duct. Weight factors are assigned to the objective functions in this multi-objective approach, which are varied to obtain a unique shape for each such combination. The addition of mass penalization to the existing objective function results in a complex lattice-like structure, which is a different outcome in geometry and shape when compared to the case without any additional penalization. The thermal performance efficiency of this shape is found to be higher by at-least 18% when compared to the computational fluid dynamics results of a few other turbulator shapes from the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny完成签到,获得积分10
刚刚
lxdfrank发布了新的文献求助30
1秒前
debu9完成签到,获得积分10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
难过板栗应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
1秒前
墨痕mohen完成签到,获得积分10
2秒前
Muhi完成签到,获得积分10
2秒前
andrew完成签到,获得积分10
2秒前
lulu发布了新的文献求助30
3秒前
elgar612完成签到,获得积分10
3秒前
闪闪星星完成签到,获得积分10
4秒前
ark861023完成签到,获得积分10
4秒前
满意的醉蝶完成签到,获得积分10
5秒前
Xuu完成签到,获得积分10
6秒前
独特的夜阑完成签到 ,获得积分10
7秒前
yang完成签到,获得积分10
7秒前
不要再忘登陆密码了完成签到,获得积分10
8秒前
宁静致远QY完成签到,获得积分10
9秒前
小冠军完成签到,获得积分10
9秒前
赶紧毕业完成签到,获得积分10
9秒前
guajiguaji完成签到,获得积分20
10秒前
Liixy完成签到,获得积分20
12秒前
居居侠完成签到 ,获得积分10
12秒前
醉熏的伊完成签到,获得积分10
12秒前
缓慢的煎蛋完成签到,获得积分10
12秒前
YF驳回了CipherSage应助
14秒前
考啥都上岸完成签到,获得积分10
15秒前
科研通AI5应助huangyi采纳,获得10
15秒前
科研通AI5应助jimmyhui采纳,获得10
15秒前
jidou1011发布了新的文献求助10
15秒前
南浔完成签到 ,获得积分10
17秒前
stuckinrain完成签到,获得积分10
17秒前
JOKY完成签到 ,获得积分10
18秒前
刘zx完成签到,获得积分10
18秒前
高山我梦完成签到,获得积分10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837609
求助须知:如何正确求助?哪些是违规求助? 3379759
关于积分的说明 10510349
捐赠科研通 3099361
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615