An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine

遥感 水田 物候学 像素 环境科学 计算机科学 地图学 人工智能 地理 农学 生物
作者
Rongguang Ni,Jinyan Tian,Xiaojuan Li,Dameng Yin,Jiwei Li,Huili Gong,Jie Zhang,Lin Zhu,Dongli Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:178: 282-296 被引量:109
标识
DOI:10.1016/j.isprsjprs.2021.06.018
摘要

Accurate paddy rice mapping with remote sensing at a regional scale plays critical roles in agriculture and ecology. Previous studies mainly employed a single key phenological period (i.e., transplanting) for paddy rice mapping. However, the prominent poor spectral separability between paddy rice and others (e.g., wetland vegetation) exists in this period. To this end, we developed an enhanced pixel-based phenological feature composite method (Eppf-CM). Subsequently, the feature derived from Eppf-CM was served as the input data to a one-class classifier (One-Class Support Vector Machine, OCSVM). Eppf-CM includes two steps: (1) four distinctive phenological periods, specifically designed for rice mapping, were identified by time-series analysis of Sentinel-2 imagery. (2) We strived to choose one or two vegetation indices for each phenological period, and then stacking all the indices together. The new developed paddy rice mapping method with Eppf-CM and OCSVM is low costs and high precision. To fully demonstrate the outstanding precision of Eppf-CM based paddy rice map (Eppf map) in this study, three different sources of reference data were employed for comparison purposes. Compared with the field survey data, Eppf map achieved an overall accuracy higher than 0.98. The paddy rice area in Northeast China from Eppf map is only 1.86% less than that of the National Bureau of Statistics in 2019. Compared with a latest paddy rice map at the same spatial resolution (10-m), Eppf map significantly reduced commission and omission errors. To the best of our knowledge, the Eppf-CM has obtained one of the highest accuracy rice maps in Northeast China up-to-date. As a whole, we expect that: (1) Eppf-CM will advance the phenology-based agricultural remote sensing mapping method. (2) The paddy rice map will provide a new baseline data for the study of agriculture and ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洁净醉柳完成签到 ,获得积分10
1秒前
胡说八道完成签到 ,获得积分10
1秒前
火云完成签到,获得积分10
1秒前
Samuel_给Samuel_的求助进行了留言
2秒前
2秒前
诚心的以寒完成签到,获得积分10
2秒前
甜蜜晓绿完成签到,获得积分10
3秒前
3秒前
Yvonna发布了新的文献求助10
3秒前
kkk完成签到,获得积分20
4秒前
顾矜应助清水采纳,获得10
4秒前
清爽的如冰完成签到,获得积分10
4秒前
七月的July完成签到 ,获得积分10
5秒前
田様应助sdnihbhew采纳,获得10
5秒前
5秒前
饿的糕发布了新的文献求助30
6秒前
丘比特应助hlxhlx采纳,获得10
6秒前
在水一方应助柳绿柳采纳,获得10
6秒前
6秒前
6秒前
蜡笔小锐发布了新的文献求助10
7秒前
8秒前
8秒前
左丘冥完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
乐乐应助阿拉波波采纳,获得10
10秒前
清水完成签到,获得积分10
11秒前
CipherSage应助安静蘑菇采纳,获得30
12秒前
asdzsx发布了新的文献求助30
12秒前
香蕉觅云应助SQ采纳,获得10
12秒前
12秒前
13秒前
天天快乐应助尕辉采纳,获得10
13秒前
ChampionKing发布了新的文献求助10
13秒前
鱿鱼完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd Edition 2000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
A simple method for reusing western blots on PVDF membranes 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924955
求助须知:如何正确求助?哪些是违规求助? 3469755
关于积分的说明 10959394
捐赠科研通 3199175
什么是DOI,文献DOI怎么找? 1767535
邀请新用户注册赠送积分活动 856944
科研通“疑难数据库(出版商)”最低求助积分说明 795775