Coordinate Attention for Efficient Mobile Network Design

计算机科学 特征(语言学) 联营 嵌入 注意力网络 频道(广播) 人工智能 架空(工程) 编码(内存) 模式识别(心理学) 分割 判别式 计算机视觉 计算机网络 哲学 操作系统 语言学
作者
Qibin Hou,Daquan Zhou,Jiashi Feng
标识
DOI:10.1109/cvpr46437.2021.01350
摘要

Recent studies on mobile network design have demonstrated the remarkable effectiveness of channel attention (e.g., the Squeeze-and-Excitation attention) for lifting model performance, but they generally neglect the positional information, which is important for generating spatially selective attention maps. In this paper, we propose a novel attention mechanism for mobile networks by embedding positional information into channel attention, which we call "coordinate attention". Unlike channel attention that transforms a feature tensor to a single feature vector via 2D global pooling, the coordinate attention factorizes channel attention into two 1D feature encoding processes that aggregate features along the two spatial directions, respectively. In this way, long-range dependencies can be captured along one spatial direction and meanwhile precise positional information can be preserved along the other spatial direction. The resulting feature maps are then encoded separately into a pair of direction-aware and position-sensitive attention maps that can be complementarily applied to the input feature map to augment the representations of the objects of interest. Our coordinate attention is simple and can be flexibly plugged into classic mobile networks, such as MobileNetV2, MobileNeXt, and EfficientNet with nearly no computational overhead. Extensive experiments demonstrate that our coordinate attention is not only beneficial to ImageNet classification but more interestingly, behaves better in down-stream tasks, such as object detection and semantic segmentation. Code is available at https://github.com/Andrew-Qibin/CoordAttention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助yang采纳,获得30
1秒前
852应助b_wasky采纳,获得10
1秒前
平常的毛豆应助ardejiang采纳,获得10
1秒前
momo发布了新的文献求助10
2秒前
3秒前
3秒前
英勇的白风完成签到,获得积分10
3秒前
4秒前
顾子墨完成签到,获得积分10
6秒前
7Hours发布了新的文献求助10
6秒前
沉静立辉完成签到,获得积分10
6秒前
安谢完成签到,获得积分10
7秒前
炸炸呦发布了新的文献求助30
7秒前
mangata完成签到,获得积分10
7秒前
野性的曼香完成签到 ,获得积分10
8秒前
9秒前
10秒前
hs完成签到,获得积分10
10秒前
10秒前
18969431868完成签到,获得积分10
10秒前
Orange应助小马驹采纳,获得10
11秒前
创新发布了新的文献求助10
11秒前
斯文的一刀完成签到,获得积分10
11秒前
武沛凝发布了新的文献求助10
11秒前
慕青应助做实验的猹采纳,获得10
12秒前
12秒前
黑魔仙小月完成签到,获得积分10
12秒前
李健的小迷弟应助赵赵赵采纳,获得10
13秒前
华仔应助lili采纳,获得10
13秒前
13秒前
pzxixixi发布了新的文献求助10
13秒前
123完成签到,获得积分10
13秒前
13秒前
14秒前
lancer发布了新的文献求助10
14秒前
kirito完成签到,获得积分10
14秒前
15秒前
choumaoo完成签到,获得积分10
15秒前
炸炸呦完成签到,获得积分10
16秒前
研友_RLNDkZ完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798