Inter-Subject Domain Adaptation for CNN-Based Wrist Kinematics Estimation Using sEMG

计算机科学 卷积神经网络 人工智能 运动学 模式识别(心理学) 域适应 领域(数学分析) 回归 机器学习 数学 统计 经典力学 数学分析 分类器(UML) 物理
作者
Tianzhe Bao,Syed Ali Raza Zaidi,Sheng Quan Xie,Pengfei Yang,Zhiqiang Zhang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29: 1068-1078 被引量:48
标识
DOI:10.1109/tnsre.2021.3086401
摘要

Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
netake完成签到,获得积分10
2秒前
鳗鱼依白发布了新的文献求助10
2秒前
3秒前
3秒前
王旭完成签到,获得积分20
4秒前
JamesPei应助朴实以丹采纳,获得10
5秒前
小贝完成签到,获得积分10
5秒前
5秒前
6秒前
悦耳垣发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
Galen发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
星辰大海应助jcc采纳,获得10
7秒前
秦汉的抉择完成签到,获得积分10
8秒前
林中灰狼发布了新的文献求助10
8秒前
瑾进完成签到 ,获得积分10
10秒前
10秒前
10秒前
hhh完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
Hello应助shirelylee采纳,获得10
11秒前
鳗鱼依白完成签到,获得积分20
13秒前
13秒前
哈哈哈关注了科研通微信公众号
14秒前
哈哈哈关注了科研通微信公众号
14秒前
寒水完成签到 ,获得积分10
15秒前
小北发布了新的文献求助10
15秒前
15秒前
weiyu_u发布了新的文献求助30
16秒前
16秒前
SUNstp完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
科研顺利发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784905
求助须知:如何正确求助?哪些是违规求助? 5684415
关于积分的说明 15465839
捐赠科研通 4913887
什么是DOI,文献DOI怎么找? 2644971
邀请新用户注册赠送积分活动 1592868
关于科研通互助平台的介绍 1547242