BayICE: A Bayesian hierarchical model for semireference-based deconvolution of bulk transcriptomic data

反褶积 贝叶斯概率 吉布斯抽样 计算机科学 计算生物学 集合(抽象数据类型) 马尔科夫蒙特卡洛 盲反褶积 算法 数据挖掘 生物 人工智能 程序设计语言
作者
An‐Shun Tai,George C. Tseng,Wen‐Ping Hsieh
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:15 (1) 被引量:6
标识
DOI:10.1214/20-aoas1376
摘要

Gene expression deconvolution is a powerful tool for exploring the microenvironment of complex tissues comprised of multiple cell groups using transcriptomic data. Characterizing cell activities for a particular condition has been regarded as a primary mission against diseases. For example, cancer immunology aims to clarify the role of the immune system in the progression and development of cancer through analyzing the immune cell components of tumors. To that end, many deconvolution methods have been proposed for inferring cell subpopulations within tissues. Nevertheless, two problems limit the practicality of current approaches. First, most approaches use external purified data to preselect cell type-specific genes that contribute to deconvolution. However, some types of cells cannot be found in purified profiles, and the genes specifically over- or under-expressed in them cannot be identified. This is particularly a problem in cancer studies. Hence, a preselection strategy that is independent from deconvolution is inappropriate. The second problem is that existing approaches do not recover the expression profiles of unknown cells present in bulk tissues when the reference set of purified cell-specific profiles is incomplete which results in biased estimation of unknown cell proportions. Furthermore, it causes the shift-invariant property of deconvolution to fail which then affects the estimation performance. To address these two problems, we propose a novel semireference-based deconvolution approach, BayICE which employs hierarchical Bayesian modeling with stochastic search variable selection. We develop a comprehensive Markov chain Monte Carlo procedure through Gibbs sampling to estimate proportions, expression profiles and signature genes for a set of known reference cell types as well as an unknown cell type. Simulation and validation studies illustrate that BayICE outperforms existing semireference-based deconvolution approaches in estimating cell proportions. We further show that BayICE is applicable to single-cell RNA-seq data. Subsequently, we demonstrate an application of BayICE in the RNA sequencing of patients with nonsmall cell lung cancer. The model is implemented in the R package "BayICE," and the algorithm is available for download.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
如意葶完成签到 ,获得积分10
3秒前
任老师发布了新的文献求助10
4秒前
852应助jason采纳,获得10
4秒前
5秒前
huangyao发布了新的文献求助10
6秒前
6秒前
努力勤奋发布了新的文献求助10
6秒前
6秒前
小小细胞完成签到,获得积分20
6秒前
科研通AI2S应助shilong.yang采纳,获得30
7秒前
7秒前
9秒前
9秒前
我笑点很低完成签到,获得积分10
9秒前
Gentle完成签到,获得积分10
11秒前
11秒前
DrYang发布了新的文献求助10
11秒前
Doctor-C发布了新的文献求助10
12秒前
13秒前
guozizi发布了新的文献求助40
13秒前
13秒前
梓歆完成签到 ,获得积分10
13秒前
迅速的皮皮虾完成签到,获得积分10
14秒前
zhiyao2025完成签到,获得积分10
14秒前
15秒前
钉钉完成签到 ,获得积分10
16秒前
科研通AI2S应助XL神放采纳,获得30
17秒前
shilong.yang完成签到,获得积分10
18秒前
烟花应助wnan_07采纳,获得10
19秒前
20秒前
珂珂完成签到,获得积分10
22秒前
任老师完成签到,获得积分10
22秒前
小费发布了新的文献求助30
26秒前
小易完成签到 ,获得积分10
26秒前
28秒前
温暖南莲发布了新的文献求助10
29秒前
Jacob完成签到,获得积分10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4179876
求助须知:如何正确求助?哪些是违规求助? 3715302
关于积分的说明 11712847
捐赠科研通 3396159
什么是DOI,文献DOI怎么找? 1863330
邀请新用户注册赠送积分活动 921625
科研通“疑难数据库(出版商)”最低求助积分说明 833344