亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multimodal Framework for Improvingin SilicoDrug Repositioning With the Prior Knowledge From Knowledge Graphs

知识图 计算机科学 领域知识 嵌入 药物重新定位 图形 药品 图嵌入 人工智能 机器学习 理论计算机科学 医学 精神科
作者
Zhankun Xiong,Feng Huang,Ziyan Wang,Shichao Liu,Wen Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2623-2631 被引量:11
标识
DOI:10.1109/tcbb.2021.3103595
摘要

Drug repositioning/repurposing is a very important approach towards identifying novel treatments for diseases in drug discovery. Recently, large-scale biological datasets are increasingly available for pharmaceutical research and promote the development of drug repositioning, but efficiently utilizing these datasets remains challenging. In this paper, we develop a novel multimodal framework, termed GraphPK (Graph-based Prior Knowledge) for improving in silico drug repositioning via using the prior knowledge from a drug knowledge graph. First, we construct a knowledge graph by integrating relevant bio-entities (drugs, diseases, etc.) and associations/interactions among them, and apply the knowledge graph embedding technique to extract prior knowledge of drugs and diseases. Moreover, we make use of the known drug-disease association, and obtain known association-based features from an association bipartite graph through graph embedding, and also take into account biological domain features, i.e., drug chemical structures and disease semantic similarity. Finally, we design a multimodal neural network to combine three types of features from the knowledge graph, the known associations and the biological domain, and build the prediction model for predicting drug-disease associations. Massive experiments show that our method outperforms other state-of-the-art methods in terms of most metrics, and the ablation analysis regarding the three types of features reveals that prior knowledge from knowledge graphs can not only lift the predictive power of in silico drug repositioning, but also enhance the model's robustness to different scenarios. The results of case studies offer support that GraphPK has the potential for actual use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
刚刚
common1988发布了新的文献求助10
1秒前
1秒前
HeLL0完成签到 ,获得积分10
1秒前
shenlee发布了新的文献求助10
1秒前
fan发布了新的文献求助10
1秒前
Hi完成签到 ,获得积分10
3秒前
小小猪完成签到,获得积分10
3秒前
合一海盗完成签到,获得积分10
4秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
帮主哥哥应助科研通管家采纳,获得30
6秒前
6秒前
研友_Zzrx6Z发布了新的文献求助10
6秒前
乐乐应助fan采纳,获得10
7秒前
小廖发布了新的文献求助10
8秒前
heihei完成签到,获得积分10
11秒前
孤独的涵柳完成签到 ,获得积分10
13秒前
王者归来完成签到,获得积分10
13秒前
15秒前
小吕发布了新的文献求助10
22秒前
23秒前
24秒前
27秒前
29秒前
芳华如梦发布了新的文献求助10
34秒前
希望天下0贩的0应助zc采纳,获得10
35秒前
37秒前
sllytn完成签到,获得积分10
37秒前
Hyp完成签到 ,获得积分10
41秒前
小北发布了新的文献求助10
43秒前
芳华如梦完成签到,获得积分10
43秒前
44秒前
火星上的弼完成签到,获得积分10
44秒前
科研通AI5应助shenlee采纳,获得10
48秒前
zc发布了新的文献求助10
48秒前
股价完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475199
捐赠科研通 3092539
什么是DOI,文献DOI怎么找? 1702118
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087