葡萄糖醛酸化
微粒体
酶
微粒体
代谢物
葡萄糖醛酸
活性代谢物
霉酚酸
生物化学
葡萄糖醛酸转移酶
化学
新陈代谢
酶分析
内科学
医学
移植
作者
Kristini K. Miles,Stęphan T. Stern,Philip C. Smith,Fay K. Kessler,Shazia Ali,Joseph K. Ritter
标识
DOI:10.1124/dmd.105.004663
摘要
Mycophenolic acid (MPA; 1,3-dihydro-4-hydroxy-6-methoxy-7-methyl-3-oxo-5-isobenzylfuranyl)-4-methyl-4-hexenoate), the active metabolite of the immunosuppressant prodrug, mycophenolate mofetil, undergoes glucuronidation to its 7-O-glucuronide as a primary route of metabolism. Because differences in glucuronidation may influence the efficacy and/or toxicity of MPA, we investigated the MPA UDP-glucuronosyltransferase (UGT) activities of human liver microsomes (HLMs) and rat liver microsomes with the goal of identifying UGTs responsible for MPA catalysis. HLMs (n = 23) exhibited higher average MPA glucuronidation rates (14.7 versus 6.0 nmol/mg/min, respectively, p < 0.001) and higher apparent affinity for MPA (Km = 0.082 mM versus 0.20 mM, p < 0.001) compared with rat liver microsomes. MPA UGT activities were reduced >80% in liver microsomes from Gunn rats. To identify the active enzymes, human and rat UGT1A enzymes were screened for MPA-glucuronidating activity. UGT1A9 was the only human liver-expressed UGT1A enzyme with significant activity and exhibited both high affinity (Km = 0.077 mM) and high activity (Vmax = 28 nmol · min-1 · mg-1). Spearman correlation analyses revealed a stronger relationship between HLM MPA UGT activities and 1A9-like content (r2 = 0.79) relative to 1A1 (r2 = 0.20), 1A4-like (r2 = 0.22), and 1A6 (r2 = 0.41) protein. A different profile was observed for rat with three active liver-expressed UGT1A enzymes: 1A1 (medium affinity/capacity), 1A6 (low affinity/medium capacity), and 1A7 (high affinity/capacity). Our data suggest that UGT1A enzymes are the major contributors to hepatic MPA metabolism in both species, but 1A9 is dominant in human, whereas 1A1 and 1A7 are likely the principal mediators in control rat liver. This information should be useful for interpretation of MPA pharmacokinetic and toxicity data in clinical and animal studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI