Easy and Low-Cost Identification of Metabolic Syndrome in Patients Treated With Second-Generation Antipsychotics

逻辑回归 接收机工作特性 医学 分裂情感障碍 人体测量学 代谢综合征 回归分析 统计 内科学 精神科 数学 精神病 肥胖
作者
Chao Lin,Ya Mei Bai,Jen-Shi Chen,Tzung-Jeng Hwang,Tzu An Chen,Hung Wen Chiu,Yu You Li
出处
期刊:The Journal of Clinical Psychiatry [Physicians Postgraduate Press, Inc.]
被引量:34
标识
DOI:10.4088/jcp.08m04628yel
摘要

Metabolic syndrome (MetS) is an important side effect of second-generation antipsychotics (SGAs). However, many SGA-treated patients with MetS remain undetected. In this study, we trained and validated artificial neural network (ANN) and multiple logistic regression models without biochemical parameters to rapidly identify MetS in patients with SGA treatment.A total of 383 patients with a diagnosis of schizophrenia or schizoaffective disorder (DSM-IV criteria) with SGA treatment for more than 6 months were investigated to determine whether they met the MetS criteria according to the International Diabetes Federation. The data for these patients were collected between March 2005 and September 2005. The input variables of ANN and logistic regression were limited to demographic and anthropometric data only. All models were trained by randomly selecting two-thirds of the patient data and were internally validated with the remaining one-third of the data. The models were then externally validated with data from 69 patients from another hospital, collected between March 2008 and June 2008. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of all models.Both the final ANN and logistic regression models had high accuracy (88.3% vs 83.6%), sensitivity (93.1% vs 86.2%), and specificity (86.9% vs 83.8%) to identify MetS in the internal validation set. The mean +/- SD AUC was high for both the ANN and logistic regression models (0.934 +/- 0.033 vs 0.922 +/- 0.035, P = .63). During external validation, high AUC was still obtained for both models. Waist circumference and diastolic blood pressure were the common variables that were left in the final ANN and logistic regression models.Our study developed accurate ANN and logistic regression models to detect MetS in patients with SGA treatment. The models are likely to provide a noninvasive tool for large-scale screening of MetS in this group of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江子川发布了新的文献求助10
刚刚
英姑应助朴实香露采纳,获得10
1秒前
努力成为科研大佬完成签到,获得积分10
1秒前
阳光的一应助meng采纳,获得10
1秒前
友好听云发布了新的文献求助10
1秒前
饱饱发布了新的文献求助10
2秒前
3秒前
lanana发布了新的文献求助10
3秒前
英姑应助lieditongxu采纳,获得10
3秒前
kbcbwb2002完成签到,获得积分10
3秒前
贪吃的懒羊羊关注了科研通微信公众号
4秒前
吴丁鸿完成签到,获得积分10
4秒前
6秒前
丁丁发布了新的文献求助10
6秒前
6秒前
panzhongjie完成签到,获得积分10
7秒前
1975577987完成签到,获得积分10
8秒前
8秒前
8秒前
wanci应助隐形戒指采纳,获得10
8秒前
9秒前
墨尘发布了新的文献求助10
10秒前
Chang发布了新的文献求助10
12秒前
niuya完成签到,获得积分10
13秒前
lieditongxu发布了新的文献求助10
14秒前
YY发布了新的文献求助10
15秒前
凑个数完成签到 ,获得积分10
15秒前
17秒前
隐形曼青应助江子川采纳,获得10
17秒前
23秒前
Jasper应助薇薇采纳,获得10
25秒前
脑洞疼应助他的二仙桥采纳,获得10
26秒前
26秒前
carol完成签到,获得积分10
27秒前
天亮了完成签到,获得积分20
29秒前
可研小冲发布了新的文献求助10
31秒前
乐平KYXK应助冰红茶采纳,获得10
32秒前
天亮了发布了新的文献求助20
33秒前
天天快乐应助myduty采纳,获得30
34秒前
35秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897119
求助须知:如何正确求助?哪些是违规求助? 3440982
关于积分的说明 10819478
捐赠科研通 3165955
什么是DOI,文献DOI怎么找? 1749056
邀请新用户注册赠送积分活动 845091
科研通“疑难数据库(出版商)”最低求助积分说明 788429