电解质
材料科学
电化学
水溶液
离子键合
纳米技术
储能
离子
化学工程
聚合物
电池(电)
可持续能源
单体
自愈水凝胶
锌
离子电导率
聚合物电解质
水溶液中的金属离子
超级电容器
金属
电极
工作(物理)
电化学储能
锂离子电池的纳米结构
电化学能量转换
熵(时间箭头)
热传导
化学物理
作者
Zhe Gong,Qiangqiang Meng,Yixuan Zhao,Cheng Wang,Wu Wang,Zengxia Pei
标识
DOI:10.1002/anie.202523881
摘要
Abstract Hydrogel electrolytes hold promise in enabling aqueous zinc metal batteries (ZMBs) as a sustainable energy storage technology, but they still suffer from the trade‐off between high ion conduction and electrochemical stability. High‐entropy engineering strategies are powerful in unlocking new regimes in energy storage, yet this paradigm has rarely been reported in hydrogel electrolytes. Herein, we report a proof‐of‐concept high‐entropy hydrogel electrolyte (HEHE) that integrates three ionic monomers to maximize compositional diversity and entropic stabilization. Multimodal experimental characterizations and theoretical simulations reveal that the HEHE can promote the formation of entropically stabilized ion transport pathways, and minimize water reactivity and contact ion pairing, thereby enabling selective cation conduction, uniform ionic flux, low‐energy interfacial desolvation, and crystallographic zinc deposition. The resulting HEHE circumvents the aforementioned dilemma, achieving essential electrochemical properties far exceeding those of the low‐entropy counterpart, while enabling full ZMBs to work stably at a practically high areal capacity of 3.2 mAh cm −2 . Such a HEHE uniquely orchestrates four entropy contributions within the gel matrix, and the applicability of this strategy is corroborated in parallel hydrogel electrolytes. This work establishes entropy‐driven design as a generalizable approach for soft ion conductors, expanding the scope of high‐entropy materials into aqueous batteries and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI