Controlling Jahn–Teller Distortion through Mn Slab Localization for Stable High-Voltage Sodium-Ion Batteries

作者
Yameng Fan,Haobo Li,Xiaobo Zheng,Xiaoning Li,Peng Li,Xinghan Li,Mingyue Wang,Lingfei Zhao,J. B. Kim,Bernt Johannessen,H. Can Chen,Wen Yin,Baohua Jia,Wang Hay Kan,Tianyi Ma,Wei Kong Pang
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c17738
摘要

Mn-rich layered oxides are among the most promising cathode materials for large-scale sodium-ion batteries due to their high capacity, elemental abundance, and low cost. Nevertheless, the practical application of these materials is impeded by the pronounced and intractable Jahn-Teller effect associated with Mn3+ ions. This effect triggers cooperative lattice distortion, resulting in structural degradation and compromised cycling stability. In this work, we demonstrate that spatially localizing Jahn-Teller active Mn3+ ions within confined Mn-rich slabs effectively suppresses long-range distortion and stabilizes the layered framework. The engineered Mn-rich oxide, NaNi0.3Cu0.1Mn0.6O2 (NCM316), exhibits exceptional electrochemical performance, achieving 89.5% voltage retention after 200 cycles. In full-cell configurations, NCM316 delivers a high discharge voltage of 3.36 V, the highest reported for Mn-based layered cathodes, while maintaining 84% capacity retention after 500 cycles and reaching an energy density of 337 Wh kg-1, outperforming all other Mn-based layered cathodes under a high cutoff voltage of 4.4 V. Comprehensive characterization using synchrotron X-ray and neutron scattering techniques, supported by theoretical simulations, confirm the localized presence of Mn3+ and elucidate its role in maintaining structural integrity and mitigating adverse interactions with neighboring transition metals. This work offers insight into the mechanism of Jahn-Teller distortion in Mn-rich layered oxides and proposes a broadly applicable design principle for stabilizing other Jahn-Teller active systems, such as layered lithium-rich cathodes, spinel-type oxides, and manganese-based materials for aqueous batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yewungs完成签到,获得积分10
刚刚
snow完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
桐桐应助风趣的傲之采纳,获得10
3秒前
yewungs发布了新的文献求助10
3秒前
3秒前
王jyk发布了新的文献求助10
5秒前
5秒前
搜集达人应助美丽蕨菜子采纳,获得10
5秒前
典雅的如之关注了科研通微信公众号
5秒前
5秒前
cccc1111111发布了新的文献求助10
6秒前
6秒前
6秒前
SC武完成签到,获得积分10
8秒前
老实新筠发布了新的文献求助30
8秒前
研友_85YNe8发布了新的文献求助10
9秒前
buno应助yushiolo采纳,获得30
9秒前
11秒前
zzznznnn发布了新的文献求助10
12秒前
JJ发布了新的文献求助10
14秒前
欣欣完成签到 ,获得积分10
14秒前
老实新筠完成签到,获得积分10
17秒前
ccc完成签到,获得积分10
18秒前
18秒前
19秒前
liz发布了新的文献求助10
20秒前
20秒前
cccc1111111完成签到,获得积分10
20秒前
20秒前
20秒前
一裤子灰发布了新的文献求助20
21秒前
艾克发布了新的文献求助10
21秒前
zzz完成签到,获得积分10
22秒前
隐形曼青应助怕黑捕采纳,获得10
23秒前
tangxinhebaodan完成签到,获得积分10
23秒前
阿依咕噜完成签到,获得积分10
24秒前
24秒前
家夜雪发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851