Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier

范畴变量 人工智能 计算机科学 数据挖掘 聚类分析 机器学习 重症监护室 重症监护 朴素贝叶斯分类器 梯度升压 模糊逻辑 随机森林 医学 支持向量机 重症监护医学
作者
Raheleh Davoodi,Mohammad Hassan Moradi
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:79: 48-59 被引量:76
标识
DOI:10.1016/j.jbi.2018.02.008
摘要

Electronic health records (EHRs) contain critical information useful for clinical studies. Early assessment of patients' mortality in intensive care units is of great importance. In this paper, a Deep Rule-Based Fuzzy System (DRBFS) was proposed to develop an accurate in-hospital mortality prediction in the intensive care unit (ICU) patients employing a large number of input variables. Our main contribution is proposing a system, which is capable of dealing with big data with heterogeneous mixed categorical and numeric attributes. In DRBFS, the hidden layer in each unit is represented by interpretable fuzzy rules. Benefiting the strength of soft partitioning, a modified supervised fuzzy k-prototype clustering has been employed for fuzzy rule generation. According to the stacked approach, the same input space is kept in every base building unit of DRBFS. The training set in addition to random shifts, obtained from random projections of prediction results of the current base building unit is presented as the input of the next base building unit. A cohort of 10,972 adult admissions was selected from Medical Information Mart for Intensive Care (MIMIC-III) data set, where 9.31% of patients have died in the hospital. A heterogeneous feature set of first 48 h from ICU admissions, were extracted for in-hospital mortality rate. Required preprocessing and appropriate feature extraction were applied. To avoid biased assessments, performance indexes were calculated using holdout validation. We have evaluated our proposed method with several common classifiers including naïve Bayes (NB), decision trees (DT), Gradient Boosting (GB), Deep Belief Networks (DBN) and D-TSK-FC. The area under the receiver operating characteristics curve (AUROC) for NB, DT, GB, DBN, D-TSK-FC and our proposed method were 73.51%, 61.81%, 72.98%, 70.07%, 66.74% and 73.90% respectively. Our results have demonstrated that DRBFS outperforms various methods, while maintaining interpretable rule bases. Besides, benefiting from specific clustering methods, DRBFS can be well scaled up for large heterogeneous data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
聪明蛋挞应助韦智杰采纳,获得10
1秒前
1秒前
在下天池宫人间行走完成签到,获得积分10
1秒前
斯文败类应助星辰采纳,获得10
3秒前
zmx完成签到,获得积分10
3秒前
Jasper应助youngcy采纳,获得10
4秒前
天天快乐应助zchchem采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
东东发布了新的文献求助10
4秒前
4秒前
杭姝完成签到,获得积分10
4秒前
5秒前
黄静发布了新的文献求助20
5秒前
5秒前
6秒前
yl发布了新的文献求助10
6秒前
6秒前
欢呼煎蛋发布了新的文献求助10
6秒前
充电宝应助快到碗里来采纳,获得10
6秒前
dang完成签到,获得积分10
7秒前
Njucd完成签到,获得积分20
7秒前
芝麻糊了发布了新的文献求助20
7秒前
王泽发布了新的文献求助10
7秒前
7秒前
GuoShanjie发布了新的文献求助10
7秒前
小二郎应助wallonce采纳,获得10
9秒前
9秒前
学术学习发布了新的文献求助10
9秒前
ychao完成签到,获得积分10
9秒前
Bonnie完成签到 ,获得积分20
9秒前
10秒前
yzm完成签到,获得积分10
10秒前
wjd完成签到 ,获得积分10
10秒前
11秒前
huangtian205发布了新的文献求助10
11秒前
延可发布了新的文献求助10
12秒前
12秒前
13秒前
13发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406273
求助须知:如何正确求助?哪些是违规求助? 4524343
关于积分的说明 14097694
捐赠科研通 4438130
什么是DOI,文献DOI怎么找? 2435995
邀请新用户注册赠送积分活动 1428126
关于科研通互助平台的介绍 1406280