痴呆
神经影像学
失智症
磁共振成像
心理学
神经科学
正电子发射断层摄影术
疾病
脑老化
认知
医学
认知功能衰退
路易体
衰老的大脑
阿尔茨海默病
退行性疾病
听力学
中枢神经系统疾病
路易氏体型失智症
认知障碍
人脑
发病年龄
大脑定位
纵向研究
健康衰老
心脏病学
神经心理学
作者
Jeyeon Lee,Brian J. Burkett,Hoon‐Ki Min,Matthew L. Senjem,Emily S. Lundt,Hugo Botha,Jonathan Graff‐Radford,Leland R Barnard,Jeffrey L. Gunter,Christopher G. Schwarz,Kejal Kantarci,David S. Knopman,Bradley F. Boeve,Val J. Lowe,Ronald C. Petersen,Clifford R. Jack,David T. Jones
出处
期刊:Nature Aging
日期:2022-05-09
卷期号:2 (5): 412-424
被引量:176
标识
DOI:10.1038/s43587-022-00219-7
摘要
Brain aging is accompanied by patterns of functional and structural change. Alzheimer’s disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging. The authors developed a deep learning-based model to estimate the brain age gap based on metabolic and structural imaging data in cognitively normal individuals and in patients with dementia. An older brain age was associated with Alzheimer’s disease biomarkers and was predictive of future cognitive decline.
科研通智能强力驱动
Strongly Powered by AbleSci AI