Deep learning-based brain age prediction in normal aging and dementia

痴呆 心理学 神经科学 疾病 脑老化 认知 医学 人工智能 计算机科学 内科学
作者
Jeyeon Lee,Brian J. Burkett,Hoon‐Ki Min,Matthew L. Senjem,Emily S. Lundt,Hugo Botha,Jonathan Graff‐Radford,Leland R Barnard,Jeffrey L. Gunter,Christopher G. Schwarz,Kejal Kantarci,David S. Knopman,Bradley F. Boeve,Val J. Lowe,Ronald C. Petersen,Clifford R. Jack,David T. Jones
出处
期刊:Nature Aging 卷期号:2 (5): 412-424 被引量:140
标识
DOI:10.1038/s43587-022-00219-7
摘要

Brain aging is accompanied by patterns of functional and structural change. Alzheimer’s disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging. The authors developed a deep learning-based model to estimate the brain age gap based on metabolic and structural imaging data in cognitively normal individuals and in patients with dementia. An older brain age was associated with Alzheimer’s disease biomarkers and was predictive of future cognitive decline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zhang发布了新的文献求助10
3秒前
5秒前
宁燕完成签到,获得积分10
5秒前
徐徐徐徐完成签到 ,获得积分10
7秒前
aleph完成签到,获得积分10
8秒前
二二完成签到 ,获得积分10
9秒前
9秒前
9秒前
斑驳发布了新的文献求助10
11秒前
eijgnij发布了新的文献求助10
13秒前
lori发布了新的文献求助10
14秒前
生动梦松应助zhang采纳,获得10
15秒前
15秒前
dengcl-jack完成签到,获得积分10
16秒前
16秒前
Beebee24完成签到,获得积分10
17秒前
For完成签到,获得积分10
18秒前
feiying88完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
Jennier完成签到,获得积分10
21秒前
feiying88发布了新的文献求助10
21秒前
小二郎应助要减肥金鑫采纳,获得10
23秒前
24秒前
24秒前
生动之云发布了新的文献求助10
24秒前
26秒前
小xy发布了新的文献求助10
26秒前
羊白玉完成签到 ,获得积分10
27秒前
NexusExplorer应助冷静妙海采纳,获得10
29秒前
overlood发布了新的文献求助10
29秒前
赘婿应助jszz采纳,获得10
30秒前
wqs发布了新的文献求助10
30秒前
31秒前
LDM发布了新的文献求助20
32秒前
iebix完成签到,获得积分20
33秒前
33秒前
天地一体完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452257
求助须知:如何正确求助?哪些是违规求助? 3919366
关于积分的说明 12164956
捐赠科研通 3569481
什么是DOI,文献DOI怎么找? 1960186
邀请新用户注册赠送积分活动 999536
科研通“疑难数据库(出版商)”最低求助积分说明 894489