Combining multi-dimensional molecular fingerprints to predict the hERG cardiotoxicity of compounds

赫尔格 心脏毒性 计算机科学 指纹(计算) 特征(语言学) 人工智能 机器学习 数据挖掘 计算生物学 医学 内科学 生物 毒性 钾通道 语言学 哲学
作者
Weizhe Ding,Yang Nan,Juanshu Wu,Chenyang Han,Xiangxin Xin,Siyuan Li,Hongsheng Liu,Li Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105390-105390 被引量:7
标识
DOI:10.1016/j.compbiomed.2022.105390
摘要

Recently, drug toxicity has become a critical problem with heavy medical and economic burdens. Acquired long QT syndrome (acLQTS) is an acquired cardiac ion channel disease caused by drugs blocking the hERG channel. Therefore, it is necessary to avoid cardiotoxicity in drug design, and computer models have been widely used to fix this predicament. In this study, we collected a hERG inhibitor dataset containing 8671 compounds, and then, these compounds were featurized by traditional molecular fingerprints (including Baseline2D, ECFP4, PropertyFP, and 3DFP) and the newly proposed molecular dynamics fingerprint (MDFP). Subsequently, regression prediction models were established by using four machine learning algorithms based on these fingerprints and the combined multi-dimensional molecular fingerprints (MultiFP). After cross-validation and independent test dataset validation, the results show that the best model was built by the consensus of four algorithms with MultiFP, and this model bests recently published methods in terms of hERG cardiotoxicity prediction with a RMSE of 0.531 and a R2 of 0.653 on the test dataset. Feature importance analysis and correlation analysis identified some novel structural features and molecular dynamics features that are highly associated with the hERG inhibition of compounds. Our findings provide new insight into multi-dimensional molecular fingerprints and consensus models for hERG cardiotoxicity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助顾威采纳,获得10
1秒前
情怀应助闪闪雪糕采纳,获得10
1秒前
1秒前
管紫南发布了新的社区帖子
1秒前
梦影发布了新的文献求助10
1秒前
1秒前
金色稻谷完成签到 ,获得积分10
1秒前
大大彬发布了新的文献求助30
2秒前
njau2005完成签到,获得积分10
2秒前
圈哥完成签到,获得积分10
2秒前
科研通AI5应助22222采纳,获得10
2秒前
冰魂应助显隐采纳,获得10
3秒前
3秒前
跳跃的老三完成签到,获得积分10
3秒前
Mae完成签到 ,获得积分10
3秒前
3秒前
风轻完成签到,获得积分10
4秒前
SYY发布了新的文献求助10
4秒前
4秒前
李健应助俏皮的惜灵采纳,获得20
4秒前
5秒前
YY发布了新的文献求助30
5秒前
5秒前
Vera完成签到,获得积分10
5秒前
yanhuazi完成签到,获得积分10
5秒前
靖123456发布了新的文献求助10
5秒前
6秒前
6秒前
英姑应助YGYANG采纳,获得10
6秒前
camaelxin发布了新的文献求助10
7秒前
xinyu发布了新的文献求助10
7秒前
可爱的彩虹应助Stageruner采纳,获得30
8秒前
hahaha应助风趣的小鸽子采纳,获得10
8秒前
cdercder应助凶狠的鸣凤采纳,获得10
8秒前
8秒前
鲜艳的从波完成签到,获得积分10
8秒前
swy发布了新的文献求助10
9秒前
筋筋子发布了新的文献求助10
9秒前
超越好帅发布了新的文献求助10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804665
求助须知:如何正确求助?哪些是违规求助? 3349505
关于积分的说明 10344809
捐赠科研通 3065569
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808727
科研通“疑难数据库(出版商)”最低求助积分说明 764723