亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spiking Transformer Networks: A Rate Coded Approach for Processing Sequential Data

计算机科学 反向传播 神经形态工程学 变压器 人工神经网络 尖峰神经网络 能源消耗 高效能源利用 人工智能 深度学习 卷积神经网络 机器学习 电压 工程类 电气工程
作者
Etienne Mueller,Viktor Studenyak,Daniel Auge,Alois Knoll
标识
DOI:10.1109/icsai53574.2021.9664146
摘要

Machine learning applications are steadily increasing in performance, while also being deployed on a growing number of devices with limited energy resources. To minimize this trade-off, researchers are continually looking for more energy efficient solutions. A promising field involves the use of spiking neural networks in combination with neuromorphic hardware, significantly reducing energy consumption since energy is only consumed as information is being processed. However, as their learning algorithms lag behind conventional neural networks trained with backpropagation, not many applications can be found today. The highest levels of accuracy can be achieved by converting networks that are trained with backpropagation to spiking networks. Spiking neural networks can show nearly the same performance in fully connected and convolutional networks. The conversion of recurrent networks has been shown to be challenging. However, recent progress with transformer networks could change this. This type of network not only consists of modules that can easily be converted, but also shows the best accuracy levels for different machine learning tasks. In this work, we present a method to convert the transformer architecture to networks of spiking neurons. With only minimal conversion loss, our approach can be used for processing sequential data with very high accuracy while offering the possibility of reductions in energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遥知马完成签到,获得积分10
5秒前
6秒前
8秒前
鱿鱼的云朵完成签到 ,获得积分10
9秒前
ceeray23发布了新的文献求助20
9秒前
obito完成签到,获得积分10
11秒前
12秒前
kdnk发布了新的文献求助10
12秒前
映天完成签到 ,获得积分10
12秒前
伯云完成签到,获得积分10
17秒前
zhongbo发布了新的文献求助10
17秒前
陈陈完成签到,获得积分10
20秒前
liuyingjuan829完成签到,获得积分10
24秒前
nicoco完成签到,获得积分10
25秒前
贪玩的万仇完成签到 ,获得积分10
27秒前
wzbc完成签到,获得积分10
27秒前
wuyuxuan完成签到 ,获得积分10
30秒前
汉堡包应助阳阳采纳,获得10
30秒前
2213sss完成签到,获得积分10
31秒前
35秒前
36秒前
Ava应助liuyingjuan829采纳,获得10
39秒前
学术小菜鸟完成签到 ,获得积分10
40秒前
二三语逢山外山完成签到 ,获得积分10
40秒前
42秒前
Alex应助sailingluwl采纳,获得20
42秒前
科研通AI6应助Proustian采纳,获得10
42秒前
Donnie333完成签到,获得积分10
46秒前
dynamoo发布了新的文献求助30
1分钟前
田様应助木林山水采纳,获得10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
1分钟前
陈陈发布了新的文献求助10
1分钟前
故城完成签到 ,获得积分10
1分钟前
1分钟前
星星发布了新的文献求助10
1分钟前
1分钟前
1分钟前
wanci应助陈陈采纳,获得10
1分钟前
含着朵白云完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564775
求助须知:如何正确求助?哪些是违规求助? 4649490
关于积分的说明 14689018
捐赠科研通 4591475
什么是DOI,文献DOI怎么找? 2519172
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846