清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks

人工智能 深度学习 人工神经网络 计算机科学 目视检查 像素 机器学习 深层神经网络 管道(软件) 领域(数学分析) 过程(计算) 故障检测与隔离 机器视觉 模式识别(心理学) 数学 操作系统 数学分析 执行机构 程序设计语言
作者
Tobias Schlosser,Michael Friedrich,Frederik Beuth,Danny Kowerko
出处
期刊:Journal of Intelligent Manufacturing [Springer Science+Business Media]
卷期号:33 (4): 1099-1123 被引量:42
标识
DOI:10.1007/s10845-021-01906-9
摘要

Abstract In the semiconductor industry, automated visual inspection aims to improve the detection and recognition of manufacturing defects by leveraging the power of artificial intelligence and computer vision systems, enabling manufacturers to profit from an increased yield and reduced manufacturing costs. Previous domain-specific contributions often utilized classical computer vision approaches, whereas more novel systems deploy deep learning based ones. However, a persistent problem in the domain stems from the recognition of very small defect patterns which are often in the size of only a few $$\mu $$ μ m and pixels within vast amounts of high-resolution imagery. While these defect patterns occur on the significantly larger wafer surface, classical machine and deep learning solutions have problems in dealing with the complexity of this challenge. This contribution introduces a novel hybrid multistage system of stacked deep neural networks (SH-DNN) which allows the localization of the finest structures within pixel size via a classical computer vision pipeline, while the classification process is realized by deep neural networks. The proposed system draws the focus over the level of detail from its structures to more task-relevant areas of interest. As the created test environment shows, our SH-DNN-based multistage system surpasses current approaches of learning-based automated visual inspection. The system reaches a performance (F1-score) of up to 99.5%, corresponding to a relative improvement of the system’s fault detection capabilities by 8.6-fold. Moreover, by specifically selecting models for the given manufacturing chain, runtime constraints are satisfied while improving the detection capabilities of currently deployed approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王琦应助紧张的海露采纳,获得10
6秒前
LMY完成签到 ,获得积分10
27秒前
bkagyin应助紧张的海露采纳,获得10
33秒前
方白秋完成签到,获得积分10
37秒前
完美世界应助调皮帆布鞋采纳,获得10
45秒前
王琦完成签到,获得积分10
47秒前
小嚣张完成签到,获得积分10
48秒前
山山完成签到 ,获得积分10
50秒前
彭于晏应助Lillianzhu1采纳,获得30
55秒前
59秒前
1分钟前
叶远望完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
小小完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
CC完成签到,获得积分0
3分钟前
mkeale完成签到,获得积分10
4分钟前
糟糕的翅膀完成签到,获得积分10
5分钟前
王琦发布了新的文献求助10
5分钟前
小西完成签到 ,获得积分10
5分钟前
CHANG完成签到 ,获得积分10
5分钟前
移动马桶完成签到 ,获得积分10
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
pagemao完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI5应助调皮帆布鞋采纳,获得10
6分钟前
元秋发布了新的文献求助10
6分钟前
xingsixs完成签到 ,获得积分10
6分钟前
迟雨烟暮完成签到 ,获得积分10
7分钟前
健康的妙菱完成签到,获得积分10
7分钟前
烟消云散完成签到,获得积分10
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843264
求助须知:如何正确求助?哪些是违规求助? 3385497
关于积分的说明 10540718
捐赠科研通 3106138
什么是DOI,文献DOI怎么找? 1710881
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308