正交基
数学
分段
基函数
勒让德多项式
应用数学
伯努利多项式
微分方程
基础(线性代数)
一般化
分式程序设计
正交性
数学优化
数学分析
正交多项式
非线性规划
非线性系统
经典正交多项式
物理
几何学
量子力学
作者
Mohammad Heydari,Mohsen Razzaghi,Z. Avazzadeh
标识
DOI:10.1177/10775463211059364
摘要
In this study, the orthonormal piecewise Bernoulli functions are generated as a new kind of basis functions. An explicit matrix related to fractional integration of these functions is obtained. An efficient direct method is developed to solve a novel set of optimal control problems defined using a fractional integro-differential equation. The presented technique is based on the expressed basis functions and their fractional integral matrix together with the Gauss–Legendre integration method and the Lagrange multipliers algorithm. This approach converts the original problem into a mathematical programming one. Three examples are investigated numerically to verify the capability and reliability of the approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI