Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study

计算机科学 编码器 判决 变压器 自然语言处理 人工智能 卷积神经网络 聊天机器人 F1得分 物理 量子力学 电压 操作系统
作者
Yuanyuan Sun,Dongping Gao,Xifeng Shen,Meiting Li,Jiale Nan,Weining Zhang
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:10 (4): e35606-e35606 被引量:5
标识
DOI:10.2196/35606
摘要

With the prevalence of online consultation, many patient-doctor dialogues have accumulated, which, in an authentic language environment, are of significant value to the research and development of intelligent question answering and automated triage in recent natural language processing studies.The purpose of this study was to design a front-end task module for the network inquiry of intelligent medical services. Through the study of automatic labeling of real doctor-patient dialogue text on the internet, a method of identifying the negative and positive entities of dialogues with higher accuracy has been explored.The data set used for this study was from the Spring Rain Doctor internet online consultation, which was downloaded from the official data set of Alibaba Tianchi Lab. We proposed a composite abutting joint model, which was able to automatically classify the types of clinical finding entities into the following 4 attributes: positive, negative, other, and empty. We adapted a downstream architecture in Chinese Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach (RoBERTa) with whole word masking (WWM) extended (RoBERTa-WWM-ext) combining a text convolutional neural network (CNN). We used RoBERTa-WWM-ext to express sentence semantics as a text vector and then extracted the local features of the sentence through the CNN, which was our new fusion model. To verify its knowledge learning ability, we chose Enhanced Representation through Knowledge Integration (ERNIE), original Bidirectional Encoder Representations from Transformers (BERT), and Chinese BERT with WWM to perform the same task, and then compared the results. Precision, recall, and macro-F1 were used to evaluate the performance of the methods.We found that the ERNIE model, which was trained with a large Chinese corpus, had a total score (macro-F1) of 65.78290014, while BERT and BERT-WWM had scores of 53.18247117 and 69.2795315, respectively. Our composite abutting joint model (RoBERTa-WWM-ext + CNN) had a macro-F1 value of 70.55936311, showing that our model outperformed the other models in the task.The accuracy of the original model can be greatly improved by giving priority to WWM and replacing the word-based mask with unit to classify and label medical entities. Better results can be obtained by effectively optimizing the downstream tasks of the model and the integration of multiple models later on. The study findings contribute to the translation of online consultation information into machine-readable information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fx完成签到 ,获得积分10
2秒前
nn完成签到,获得积分10
3秒前
zho发布了新的文献求助10
4秒前
冰魂应助如意白风采纳,获得10
6秒前
8秒前
zhangjw完成签到 ,获得积分10
9秒前
14秒前
chlc6973完成签到,获得积分10
15秒前
joyce完成签到,获得积分10
15秒前
梓凝完成签到 ,获得积分10
17秒前
yzhilson完成签到 ,获得积分10
17秒前
18秒前
Zephr发布了新的文献求助10
20秒前
Aaaaguo完成签到 ,获得积分10
21秒前
shunshun51213发布了新的文献求助10
21秒前
上官完成签到 ,获得积分10
22秒前
ZH完成签到 ,获得积分10
23秒前
吉祥高趙发布了新的文献求助10
23秒前
逆时针完成签到,获得积分10
27秒前
学谦完成签到,获得积分10
27秒前
yanzu完成签到,获得积分0
30秒前
vampv应助孤独丹秋采纳,获得10
30秒前
左岸完成签到 ,获得积分10
30秒前
科研通AI5应助Zephr采纳,获得10
33秒前
有姝发布了新的文献求助10
36秒前
HonestLiang完成签到,获得积分10
38秒前
猩猩完成签到,获得积分10
40秒前
波安班完成签到,获得积分10
45秒前
kky完成签到 ,获得积分10
46秒前
Cherry完成签到,获得积分10
47秒前
执着的导师完成签到,获得积分10
51秒前
sisi完成签到,获得积分10
52秒前
小六子123完成签到,获得积分10
53秒前
33完成签到 ,获得积分10
53秒前
Hey完成签到 ,获得积分10
55秒前
啦啦啦123完成签到,获得积分10
56秒前
东十八完成签到 ,获得积分10
56秒前
斯文的慕儿完成签到 ,获得积分10
1分钟前
lyx完成签到 ,获得积分10
1分钟前
ahui完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776097
求助须知:如何正确求助?哪些是违规求助? 3321698
关于积分的说明 10206667
捐赠科研通 3036787
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841