Pout2Prot: An Efficient Tool to Create Protein (Sub)groups from Percolator Output Files

麻省理工许可证 蛋白质组 计算机科学 源代码 软件 计算生物学 源代码行 蛋白质组学 蛋白质基因组学 数据挖掘 生物 生物信息学 程序设计语言 基因组学 基因组 遗传学 基因
作者
Kay Schallert,Pieter Verschaffelt,Bart Mesuere,Dirk Benndorf,Lennart Martens,Tim Van Den Bossche
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:21 (4): 1175-1180 被引量:9
标识
DOI:10.1021/acs.jproteome.1c00685
摘要

In metaproteomics, the study of the collective proteome of microbial communities, the protein inference problem is more challenging than in single-species proteomics. Indeed, a peptide sequence can be present not only in multiple proteins or protein isoforms of the same species, but also in homologous proteins from closely related species. To assign the taxonomy and functions of the microbial species, specialized tools have been developed, such as Prophane. This tool, however, is not directly compatible with post-processing tools such as Percolator. In this manuscript we therefore present Pout2Prot, which takes Percolator Output (.pout) files from multiple experiments and creates protein group and protein subgroup output files (.tsv) that can be used directly with Prophane. We investigated different grouping strategies and compared existing protein grouping tools to develop an advanced protein grouping algorithm that offers a variety of different approaches, allows grouping for multiple files, and uses a weighted spectral count for protein (sub)groups to reflect abundance. Pout2Prot is available as a web application at https://pout2prot.ugent.be and is installable via pip as a standalone command line tool and reusable software library. All code is open source under the Apache License 2.0 and is available at https://github.com/compomics/pout2prot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜之枫发布了新的文献求助10
1秒前
科研通AI5应助夏蓉采纳,获得10
1秒前
1秒前
蛋白聚糖发布了新的文献求助200
2秒前
飘逸鑫发布了新的文献求助10
5秒前
蒙蒙发布了新的文献求助10
5秒前
Nancy完成签到,获得积分10
6秒前
谨慎完成签到,获得积分20
7秒前
8秒前
9秒前
枭筱发布了新的文献求助150
9秒前
深情安青应助mo采纳,获得10
10秒前
顾矜应助小杨同学采纳,获得10
10秒前
好好学习完成签到 ,获得积分10
10秒前
Akim应助cc采纳,获得10
10秒前
东方完成签到,获得积分10
12秒前
Manchester发布了新的文献求助10
12秒前
烟花应助蓝桉采纳,获得10
12秒前
CodeCraft应助蒙蒙采纳,获得10
12秒前
dandna完成签到 ,获得积分10
14秒前
scabbard24发布了新的文献求助10
14秒前
星星啊啊啊啊完成签到,获得积分10
14秒前
浅日完成签到,获得积分20
14秒前
15秒前
深情安青应助百日做梦采纳,获得10
16秒前
情怀应助雾安采纳,获得10
17秒前
17秒前
19秒前
科研通AI2S应助东方采纳,获得10
21秒前
甜甜玫瑰应助binbin采纳,获得10
21秒前
Owen应助火星上仰采纳,获得30
21秒前
Akim应助陈槊诸采纳,获得10
22秒前
23秒前
qy发布了新的文献求助20
23秒前
24秒前
25秒前
李颖完成签到,获得积分10
26秒前
ania完成签到,获得积分10
26秒前
cc发布了新的文献求助10
27秒前
乐乐应助xh采纳,获得10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811261
求助须知:如何正确求助?哪些是违规求助? 3355666
关于积分的说明 10377085
捐赠科研通 3072462
什么是DOI,文献DOI怎么找? 1687583
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766741