Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water

化学 格式化 电化学 电子转移 反应机理 产品分销 电解质 反应动力学 催化作用 计算化学 物理化学 电极 分子 有机化学
作者
Tao Cheng,Hai Xiao,William A. Goddard
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:138 (42): 13802-13805 被引量:378
标识
DOI:10.1021/jacs.6b08534
摘要

Copper is the only elemental metal that reduces a significant fraction of CO2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions is not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or to carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). Here, we carry out QM calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO2 reduction reaction conditions) to examine the initial reaction pathways to form CO and formate (HCOO-) from CO2 through free energy calculations at 298 K and pH 7. We find that CO formation proceeds from physisorbed CO2 to chemisorbed CO2 (*CO2δ-), with a free energy barrier of ΔG⧧ = 0.43 eV, the rate-determining step (RDS). The subsequent barriers of protonating *CO2δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 and 0.30 eV, respectively. HCOO- formation proceeds through a very different pathway in which physisorbed CO2 reacts directly with a surface H* (along with electron transfer), leading to ΔG⧧ = 0.80 eV. Thus, the competition between CO formation and HCOO- formation occurs in the first electron-transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Thus, to alter the product distribution, we need to control this first step of CO2 binding, which might involve controlling pH, alloying, or changing the structure at the nanoscale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福的蓝血完成签到,获得积分10
1秒前
英姑应助郭磊采纳,获得10
1秒前
1秒前
Akim应助灵巧谷波采纳,获得10
1秒前
Bizi发布了新的文献求助10
1秒前
2秒前
2秒前
贪玩的机器猫应助长度2到采纳,获得10
3秒前
Ava应助Elige采纳,获得10
3秒前
4秒前
我是老大应助mzrrong采纳,获得10
4秒前
5秒前
5秒前
光催化发布了新的文献求助10
5秒前
5秒前
clain6661完成签到,获得积分20
5秒前
6秒前
Huang完成签到 ,获得积分0
6秒前
7秒前
所所应助包容新蕾采纳,获得10
7秒前
科研通AI5应助aaa采纳,获得30
7秒前
超级完成签到,获得积分10
7秒前
jason完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
于远望发布了新的文献求助10
8秒前
蟑螂恶霸发布了新的文献求助10
8秒前
梨花酒完成签到,获得积分10
8秒前
淇淇完成签到,获得积分10
9秒前
Bizi完成签到,获得积分10
9秒前
shadow发布了新的文献求助10
9秒前
师专第一黑奴应助AoAoo采纳,获得10
9秒前
刻苦的阁应助激昂的乌龟采纳,获得10
9秒前
刻苦的阁应助激昂的乌龟采纳,获得10
9秒前
漫落完成签到,获得积分10
10秒前
哭泣万恶发布了新的文献求助10
10秒前
11秒前
优秀的莹发布了新的文献求助10
11秒前
兮颜发布了新的文献求助30
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Atlas of Quartz Sand Surface Textures 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4207207
求助须知:如何正确求助?哪些是违规求助? 3741587
关于积分的说明 11777693
捐赠科研通 3411621
什么是DOI,文献DOI怎么找? 1872239
邀请新用户注册赠送积分活动 927030
科研通“疑难数据库(出版商)”最低求助积分说明 836944