瓦瑟斯坦度量
混合(物理)
数学
概率分布
领域(数学分析)
纹理(宇宙学)
正多边形
概率测度
点(几何)
滤波器(信号处理)
公制(单位)
分布(数学)
计算机科学
算法
人工智能
应用数学
计算机视觉
图像(数学)
数学分析
几何学
统计
物理
运营管理
量子力学
经济
作者
Julien Rabin,Gabriel Peyré,Julie Delon,Marc Bernot
标识
DOI:10.1007/978-3-642-24785-9_37
摘要
This paper proposes a new definition of the averaging of discrete probability distributions as a barycenter over the Monge-Kantorovich optimal transport space. To overcome the time complexity involved by the numerical solving of such problem, the original Wasserstein metric is replaced by a sliced approximation over 1D distributions. This enables us to introduce a new fast gradient descent algorithm to compute Wasserstein barycenters of point clouds. This new notion of barycenter of probabilities is likely to find applications in computer vision where one wants to average features defined as distributions. We show an application to texture synthesis and mixing, where a texture is characterized by the distribution of the response to a multi-scale oriented filter bank. This leads to a simple way to navigate over a convex domain of color textures.
科研通智能强力驱动
Strongly Powered by AbleSci AI