A Comparison of Ordinary Least Squares and Logistic Regression

逻辑回归 统计 普通最小二乘法 数学 回归分析 变量 计量经济学
作者
John T. Pohlman,Dennis W. Leitner
链接
摘要

This paper compares ordinary least squares (OLS) and logistic regression in terms of their under- lying assumptions and results obtained on common data sets. Two data sets were analyzed with both methods. In the respective studies, the dependent variables were binary codes of 1) dropping out of school and 2) attending a private college. Results of both analyses were very similar. Significance tests (alpha = 0.05) produced identical decisions. OLS and logistic predicted values were highly correlated. Predicted classifications on the dependent variable were identical in study 1 and very similar in study 2. Logistic regression yielded more accurate predictions of dependent variable probabilities as measured by the average squared differences between the observed and predicted probabilities. It was concluded that both models can be used to test relationships with a binary criterion. However, logistic regression is superior to OLS at predicting the probability of an attribute, and should be the model of choice for that application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的乐枫完成签到,获得积分20
刚刚
傢誠发布了新的文献求助10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
飞鹏不会飞完成签到,获得积分10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
SciGPT应助lumos采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得30
1秒前
Orange应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
wil35完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
7777777发布了新的文献求助10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
只A不B应助科研通管家采纳,获得30
3秒前
852应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
江阳宏发布了新的文献求助20
5秒前
jiaojiao完成签到,获得积分10
6秒前
月月发布了新的文献求助10
6秒前
沉静的香水完成签到,获得积分10
6秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813238
求助须知:如何正确求助?哪些是违规求助? 3357708
关于积分的说明 10387917
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689065
邀请新用户注册赠送积分活动 812546
科研通“疑难数据库(出版商)”最低求助积分说明 767177