A Database and Evaluation Methodology for Optical Flow

光流 计算机科学 插值(计算机图形学) 基本事实 人工智能 不连续性分类 计算机视觉 算法 帧(网络) 运动(物理) 集合(抽象数据类型) 跟踪(教育) 图像(数学) 数学 教育学 心理学 数学分析 程序设计语言 电信
作者
Simon Baker,Daniel Scharstein,J. P. Lewis,Stefan Roth,Michael J. Black,Richard Szeliski
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:92 (1): 1-31 被引量:1791
标识
DOI:10.1007/s11263-010-0390-2
摘要

The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小猫完成签到 ,获得积分10
1秒前
menghongmei完成签到 ,获得积分10
1秒前
LJJ完成签到 ,获得积分10
1秒前
称心语风发布了新的文献求助10
1秒前
自由冬亦完成签到,获得积分10
2秒前
2秒前
2秒前
friend516发布了新的文献求助10
3秒前
舒心访文完成签到,获得积分10
3秒前
科研通AI5应助我爱看文献采纳,获得10
3秒前
小C完成签到,获得积分10
3秒前
3秒前
XUAN完成签到,获得积分10
3秒前
4秒前
熊博士完成签到,获得积分10
5秒前
wad发布了新的文献求助10
5秒前
6秒前
XZZ完成签到 ,获得积分10
7秒前
鲤鱼翼完成签到 ,获得积分10
7秒前
S月小小完成签到,获得积分10
7秒前
8秒前
昵称什么的不重要啦完成签到 ,获得积分10
8秒前
lii完成签到,获得积分10
8秒前
愉快书琴完成签到,获得积分10
8秒前
Jjj发布了新的文献求助10
9秒前
和谐的敏发布了新的文献求助10
9秒前
风之圣痕完成签到,获得积分10
9秒前
花样年华完成签到,获得积分0
9秒前
RSC完成签到,获得积分10
9秒前
九九完成签到,获得积分10
9秒前
长岛冰茶完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
Oil完成签到,获得积分10
11秒前
学术骗子小刚完成签到,获得积分0
11秒前
萧布完成签到,获得积分10
11秒前
大大泡泡完成签到,获得积分10
11秒前
涛tao完成签到,获得积分10
11秒前
乐观健柏完成签到,获得积分10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5150418
求助须知:如何正确求助?哪些是违规求助? 4346241
关于积分的说明 13531768
捐赠科研通 4188893
什么是DOI,文献DOI怎么找? 2297145
邀请新用户注册赠送积分活动 1297577
关于科研通互助平台的介绍 1241978