A Database and Evaluation Methodology for Optical Flow

光流 计算机科学 插值(计算机图形学) 基本事实 人工智能 不连续性分类 计算机视觉 算法 帧(网络) 运动(物理) 集合(抽象数据类型) 跟踪(教育) 图像(数学) 数学 数学分析 电信 教育学 程序设计语言 心理学
作者
Simon Baker,Daniel Scharstein,J. P. Lewis,Stefan Roth,Michael J. Black,Richard Szeliski
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:92 (1): 1-31 被引量:1791
标识
DOI:10.1007/s11263-010-0390-2
摘要

The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jingjing完成签到,获得积分10
2秒前
2秒前
Albert发布了新的文献求助10
4秒前
十一完成签到,获得积分20
6秒前
7秒前
7秒前
尛瞐慶成发布了新的文献求助10
7秒前
瘦瘦的迎南完成签到 ,获得积分10
7秒前
9秒前
9秒前
boluo666完成签到 ,获得积分10
11秒前
王yuu发布了新的文献求助10
11秒前
11秒前
19854173750完成签到,获得积分20
11秒前
真找不到完成签到,获得积分10
12秒前
薛栋潮完成签到 ,获得积分10
13秒前
19854173750发布了新的文献求助10
14秒前
唠叨的墨镜完成签到,获得积分10
14秒前
15秒前
真找不到发布了新的文献求助10
15秒前
15秒前
HaHa007完成签到,获得积分10
15秒前
111发布了新的文献求助10
16秒前
薛栋潮关注了科研通微信公众号
16秒前
猪猪hero应助jackycas采纳,获得10
17秒前
19秒前
meimei完成签到 ,获得积分10
21秒前
lu完成签到,获得积分10
23秒前
Fjj完成签到,获得积分10
24秒前
科研通AI5应助dawang采纳,获得10
25秒前
无奈的萍发布了新的文献求助10
25秒前
昏睡的蟠桃应助jjj采纳,获得200
28秒前
28秒前
脑洞疼应助无奈的萍采纳,获得30
31秒前
柚木完成签到,获得积分10
33秒前
精明半双完成签到,获得积分10
35秒前
36秒前
Lucas应助chenchen采纳,获得10
39秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563