Dual branch segment anything model‐transformer fusion network for accurate breast ultrasound image segmentation

基本事实 人工智能 分割 计算机科学 像素 模式识别(心理学) 图像分割 乳腺超声检查 乳腺癌 乳腺摄影术 医学 癌症 内科学
作者
Yu Li,Jin Huang,Yimin Zhang,Jingwen Deng,Jingwen Zhang,Lan Dong,Du Wang,Liye Mei,Cheng Lei
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17751
摘要

Abstract Background Precise and rapid ultrasound‐based breast cancer diagnosis is essential for effective treatment. However, existing ultrasound image segmentation methods often fail to capture both global contextual features and fine‐grained boundary details. Purpose This study proposes a dual‐branch network architecture that combines the Swin Transformer and Segment Anything Model (SAM) to enhance breast ultrasound image (BUSI) segmentation accuracy and reliability. Methods Our network integrates the global attention mechanism of the Swin Transformer with fine‐grained boundary detection from SAM through a multi‐stage feature fusion module. We evaluated our method against state‐of‐the‐art methods on two datasets: the Breast Ultrasound Images dataset from Wuhan University (BUSI‐WHU), which contains 927 images (560 benign and 367 malignant) with ground truth masks annotated by radiologists, and the public BUSI dataset. Performance was evaluated using mean Intersection‐over‐Union (mIoU), 95th percentile Hausdorff Distance (HD95) and Dice Similarity coefficients, with statistical significance assessed using two‐tailed independent t ‐tests with Holm–Bonferroni correction (). Results On our proposed dataset, the network achieved a mIoU of 90.82% and a HD95 of 23.50 pixels, demonstrating significant improvements over current state‐of‐the‐art methods with effect sizes for mIoU ranging from 0.38 to 0.61 ( p 0.05). On the BUSI dataset, the network achieved a mIoU of 82.83% and a HD95 of 71.13 pixels, demonstrating comparable improvements with effect sizes for mIoU ranging from 0.45 to 0.58 ( p 0.05). Conclusions Our dual‐branch network leverages the complementary strengths of Swin Transformer and SAM through a fusion mechanism, demonstrating superior breast ultrasound segmentation performance. Our code is publicly available at https://github.com/Skylanding/DSATNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一只小可爱完成签到,获得积分10
2秒前
2秒前
9527完成签到,获得积分10
2秒前
maox1aoxin应助科研通管家采纳,获得30
2秒前
掌心化雪完成签到,获得积分10
2秒前
长情诗蕾应助科研通管家采纳,获得20
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
boss发布了新的文献求助100
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
kkj完成签到,获得积分10
3秒前
iNk应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
SXYYXS完成签到 ,获得积分10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得50
5秒前
snow完成签到 ,获得积分10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小李发布了新的文献求助10
5秒前
ssm发布了新的文献求助20
6秒前
慕青应助332535采纳,获得10
6秒前
星星完成签到,获得积分10
6秒前
科研皇完成签到,获得积分10
6秒前
yygg发布了新的文献求助10
7秒前
Jasper应助kawaisansa采纳,获得10
7秒前
苏su发布了新的文献求助10
7秒前
猪猪hero应助追寻电脑采纳,获得10
7秒前
赫连立果应助天道酬勤采纳,获得10
8秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816404
求助须知:如何正确求助?哪些是违规求助? 3359885
关于积分的说明 10405540
捐赠科研通 3077920
什么是DOI,文献DOI怎么找? 1690402
邀请新用户注册赠送积分活动 813770
科研通“疑难数据库(出版商)”最低求助积分说明 767845