GlycoRNA-rich, neutrophil membrane-coated, siMT1-loaded nanoparticles mitigate abdominal aortic aneurysm progression by inhibiting the formation of neutrophil extracellular traps

中性粒细胞胞外陷阱 腹主动脉瘤 细胞外 纳米颗粒 主动脉瘤 医学 动脉瘤 材料科学 细胞生物学 炎症 化学 免疫学 外科 纳米技术 生物 生物化学
作者
Zhiwei Zhang,T. Chan Ling,Qingwei Ding,Feng Zhu,Xiaoliang Cheng,Xiaoting Li,Teng Ma,Qingyou Meng
出处
期刊:Materials today bio [Elsevier]
卷期号:31: 101630-101630 被引量:7
标识
DOI:10.1016/j.mtbio.2025.101630
摘要

Abdominal aortic aneurysm (AAA) is a life-threatening vascular condition. Currently, there are no clinically available pharmacological interventions that can stop the progression of AAA, primarily due to the incomplete understanding of its pathogenesis and the absence of effective drug delivery systems. The present study aimed to develop a targeted therapy for AAA through a nanomedicine approach involving site-specific regulation of neutrophil extracellular trap (NET)-related pathological vascular remodeling. We found that metallothionein 1 (MT1) was upregulated in AAA lesions in both humans and mice. MT1 also facilitated the formation of NETs and subsequently induced phenotypic transformation and apoptosis in vascular smooth muscle cells. Additional in vivo studies revealed that the glycoRNA-rich membranes coated siMT1-loaded poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanoparticles (GlycoRNA-NP-siMT1) effectively delivered siMT1 to AAA lesions, thereby inhibiting abdominal aortic dilation. Mechanistically, GlycoRNA-NP-siMT1 mitigated pathological remodeling of the abdominal aorta by reducing neutrophil infiltration and inhibiting the formation of NETs. Our study indicates that MT1 facilitates the progression of AAA by modulating the formation of NETs. Furthermore, GlycoRNA-NP-siMT1 show an inhibitory effect on AAA progression through a dual mechanism: they competitively inhibit neutrophil infiltration and release siMT1, which subsequently suppresses NET formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ActonMartin完成签到,获得积分10
刚刚
OU发布了新的文献求助10
刚刚
sun完成签到,获得积分20
1秒前
harry发布了新的文献求助10
1秒前
师国瑞完成签到,获得积分10
1秒前
Jasper应助Mira+采纳,获得10
1秒前
2秒前
2秒前
cuer发布了新的文献求助10
2秒前
小韩儒儒发布了新的文献求助10
3秒前
3秒前
李爱国应助acorn采纳,获得10
3秒前
pny发布了新的文献求助10
3秒前
4秒前
4秒前
Lizhenxiang发布了新的文献求助10
4秒前
4秒前
4秒前
小蘑菇应助wangs采纳,获得10
5秒前
5秒前
milkmore完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
思源应助橙子采纳,获得10
7秒前
8秒前
Lllll发布了新的文献求助10
8秒前
8秒前
milkmore发布了新的文献求助10
8秒前
小马甲应助112233采纳,获得10
8秒前
9秒前
9秒前
小蘑菇应助thea采纳,获得10
9秒前
9秒前
9秒前
XLee完成签到,获得积分10
9秒前
勤奋帽子完成签到,获得积分10
10秒前
八八完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668461
求助须知:如何正确求助?哪些是违规求助? 4890899
关于积分的说明 15124429
捐赠科研通 4827351
什么是DOI,文献DOI怎么找? 2584580
邀请新用户注册赠送积分活动 1538453
关于科研通互助平台的介绍 1496742