Advancing non-target analysis of emerging environmental contaminants with machine learning: Current status and future implications

电流(流体) 环境科学 环境规划 工程类 电气工程
作者
Alexa Canchola,Lang Tran,Wonsik Woo,Linhui Tian,Ying‐Hsuan Lin,Wei-Chun Chou
出处
期刊:Environment International [Elsevier BV]
卷期号:: 109404-109404
标识
DOI:10.1016/j.envint.2025.109404
摘要

Emerging environmental contaminants (EECs) such as pharmaceuticals, pesticides, and industrial chemicals pose significant challenges for detection and identification due to their structural diversity and lack of analytical standards. Traditional targeted screening methods often fail to detect these compounds, making non-target analysis (NTA) using high-resolution mass spectrometry (HRMS) essential for identifying unknown or suspected contaminants. However, interpreting the vast datasets generated by HRMS is complex and requires advanced data processing techniques. Recent advancements in machine learning (ML) models offer great potential for enhancing NTA applications. As such, we reviewed key developments, including optimizing workflows using computational tools, improved chemical structure identification, advanced quantification methods, and enhanced toxicity prediction capabilities. It also discusses challenges and future perspectives in the field, such as refining ML tools for complex mixtures, improving inter-laboratory validation, and further integrating computational models into environmental risk assessment frameworks. By addressing these challenges, ML-assisted NTA can significantly enhance the detection, quantification, and evaluation of EECs, ultimately contributing to more effective environmental monitoring and public health protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jiawww完成签到,获得积分10
刚刚
酷波er应助俭朴的期待采纳,获得10
刚刚
zsj97发布了新的文献求助10
1秒前
2秒前
媛宝&硕宝发布了新的文献求助10
4秒前
快乐的冷安完成签到,获得积分20
5秒前
留长发的耳机完成签到,获得积分10
6秒前
woshiwuziq发布了新的文献求助10
6秒前
7秒前
AhhHuang应助Sylvia采纳,获得10
7秒前
笑点低虔完成签到,获得积分10
7秒前
SY发布了新的文献求助10
8秒前
captain完成签到,获得积分20
10秒前
10秒前
10秒前
汉堡包应助忧郁的灵竹采纳,获得10
11秒前
牛文文完成签到,获得积分10
12秒前
13秒前
Present完成签到,获得积分10
13秒前
快乐茗完成签到,获得积分10
13秒前
CipherSage应助willam采纳,获得10
14秒前
nn完成签到,获得积分10
14秒前
陈静怡完成签到 ,获得积分10
14秒前
笑点低虔发布了新的文献求助10
15秒前
zhou发布了新的文献求助30
15秒前
牛文文发布了新的文献求助10
15秒前
Lu_ckilly完成签到 ,获得积分10
17秒前
18秒前
19秒前
zgt01应助俭朴的期待采纳,获得10
19秒前
科研包完成签到,获得积分10
20秒前
小小发布了新的文献求助10
20秒前
媛宝&硕宝完成签到,获得积分10
21秒前
24秒前
lyp7028完成签到,获得积分10
25秒前
Eve丶Paopaoxuan应助maplesirup采纳,获得10
26秒前
27秒前
28秒前
动漫大师发布了新的文献求助10
29秒前
YDSG完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796388
求助须知:如何正确求助?哪些是违规求助? 3341569
关于积分的说明 10306494
捐赠科研通 3058101
什么是DOI,文献DOI怎么找? 1678048
邀请新用户注册赠送积分活动 805789
科研通“疑难数据库(出版商)”最低求助积分说明 762815