A Network‐Based Phase‐Gradient Stacking Method for Resolving Long‐Wavelength Deformation From Low‐Coherence SAR Interferograms

堆积 连贯性(哲学赌博策略) 干涉测量 波长 相(物质) 相位展开 光学 大地测量学 地质学 遥感 物理 核磁共振 量子力学
作者
Hang Xu,Teng Wang
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:130 (4)
标识
DOI:10.1029/2024jb030026
摘要

Abstract Since the early 1990s, Synthetic Aperture Radar Interferometry (InSAR) has significantly advanced surface deformation measurement across various applications. Despite the successes, InSAR faces challenges in retrieving long‐wavelength deformation, particularly in vegetated regions. This is primarily due to the tropospheric phase delays and unwrapping errors. Here we propose a network‐based phase‐gradient stacking (NPG‐Stacking) method that calculates and stacks the phase gradients based on a triangular network connecting iteratively selected high‐coherence, residue‐free pixels. Afterward, we apply the weighted least squares inversion to retrieve the deformation phase from the stacked phase gradients, during which a posterior test is iteratively conducted to refine the network. Based on these procedures, the NPG‐Stacking allows for reducing tropospheric delays without unwrapping individual interferograms. We validate the NPG‐Stacking using C‐band Sentinel‐1 data in three InSAR‐challenging scenarios associated with earthquake cycle deformation: the far‐field postseismic deformation following the 2011 Tōhoku earthquake, the interseismic deformation along the Median Tectonic Line (MTL) of Japan, and the coseismic deformation of the 2018 Anchorage earthquake in Alaska, where conventional InSAR methods largely failed to produce useable deformation fields. In all the cases, the proposed NPG‐Stacking method reveals deformation patterns consistent with the ones interpolated from dense GNSS measurements, with corresponding accuracies of 4.5 mm/yr, 1.35 mm/yr, and 4.93 mm, respectively. Although the NPG‐Stacking methods may be limited to retrieving long‐wavelength deformation with simple temporal behaviors, the results demonstrate its robustness in low‐coherence regions, highlighting its potential to extend the InSAR applicability in challenging environments where conventional methods may fail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助一颗橘子洲头采纳,获得30
1秒前
cjh关闭了cjh文献求助
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
bin发布了新的文献求助30
10秒前
无限的含蕾完成签到,获得积分10
10秒前
888完成签到 ,获得积分10
11秒前
Owen应助今天要清零采纳,获得10
11秒前
13秒前
13秒前
奋斗小医生完成签到,获得积分10
13秒前
王志杰发布了新的文献求助10
13秒前
周灏烜完成签到,获得积分10
14秒前
111发布了新的文献求助10
15秒前
15秒前
mylene_完成签到,获得积分10
16秒前
16秒前
畅快城完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
点凌蝶发布了新的文献求助10
18秒前
18秒前
彩色阑悦发布了新的文献求助10
18秒前
19秒前
顾矜应助花开花落花无悔采纳,获得10
19秒前
19秒前
20秒前
花花发布了新的文献求助10
20秒前
20秒前
21秒前
luanzhaohui发布了新的文献求助10
21秒前
棋士发布了新的文献求助30
21秒前
22秒前
陈乙己发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
自信谷冬发布了新的文献求助10
24秒前
小蘑菇应助bin采纳,获得10
24秒前
长情诗翠完成签到 ,获得积分10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685