硒
动力学
化学
热分解
食品科学
有机化学
物理
量子力学
作者
Xin Wang,Wei Jia,Rong Zhang,Lin Shi,Bo He
标识
DOI:10.1021/acs.jafc.4c07303
摘要
Selenopeptides can be ideal dietary selenium (Se) supplements for humans. Currently, rice is not used much as a source of selenopeptides. Here, we executed the selenopeptidomics analysis of selenium-enriched rice protein hydrolysates using the full MS-dd-MS2 acquisition method and identified selenopeptides, including L{Se-Met}AK and other selenopeptides. Specifically, selenomethionine (SeMet) replaced methionine (Met) in the rice protein-Oryzain alpha chain (EC: 3.4.22) and generated a selenopeptide L{Se-Met}AK (molecular formula: C20H38N5O5Se) during subsequent protein hydrolysis. This selenopeptide was in 425–428 amino acid residues of the Oryzain alpha chain. Thermal processing led to selenopeptide cleavage, which affected the efficient retention of selenopeptides. Activation energy (Ea) was used to locate the quality control markers in the thermal degradation of selenopeptides. Therefore, this study established the thermal degradation rate equation for the selenopeptide L{Se-Met}AK at 100 °C, 110 and 120 °C; and identified the pyrolysis products, including L{Se-Met}A, LMA, LMAK, K1, and K2, involving C–N cleavage on the amide bond of alanine and lysine, C–Se bond cleavage and C–N cleavage on the amide bond of alanine and Met; the fit coefficients of the thermal reaction models were ≥0.9248, which could accurately quantify the real-time pyrolysis kinetic process; and LMAK had a lower Ea of 88.20 kJ/mol, which made it easier to produce. In summary, LMAK can be used as a quality control marker in the pyrolysis process, providing technical support for the efficient retention of selenopeptides.
科研通智能强力驱动
Strongly Powered by AbleSci AI