Variability and uncertainty of variance components in fixed-effects and mixed-effects ground-motion models

地震动 混合模型 差异(会计) 方差分量 固定效应模型 计量经济学 数学 统计 地质学 地震学 面板数据 经济 会计
作者
Kenneth W. Campbell,Nicolas Kuehn,Yousef Bozorgnia
出处
期刊:Earthquake Spectra [SAGE]
被引量:4
标识
DOI:10.1177/87552930241283717
摘要

It has become common in the development of ground-motion models (GMMs), especially using mixed-effects regression with crossed random effects, to calculate standard deviations, referred to as variance components, from sample statistics of the residuals (i.e. random effects and within-group errors) rather than using the variance components reported by a mixed-effects regression program, calculated using the same algorithms used in the mixed-effects regression, or estimated using Bayesian inference. This practice leads to underestimating the standard deviations because it does not account for the uncertainty (i.e. standard errors) associated with fitting the random effects and within-group errors during the regression analysis. In this study, we used a series of ground-motion models for Fourier amplitude spectra developed using mixed-effects regression of an Next Generation Attenuation (NGA)-West2 database to show that residual-based standard deviations can be significantly smaller than regression-based standard deviations. These differences are exacerbated for those variance components with the fewest number of observations or when the residuals are partitioned (e.g. by earthquake magnitude). Using residual-based variance components not only results in smaller standard deviations but can lead to biased inferences when attempting to compare the efficacy of a model based solely on a comparison of the values of the variance components or their related mean square errors. It can also lead to biased fixed-effects coefficients if the variance components are derived from the residuals of a mixed-effects regression rather than estimated during a regression. We show that variance components can be decomposed into various random-effect grouping factors and partitioned into subsets of predictor variables, such as magnitude, from the total residuals of a non-Bayesian mixed-effects regression program using Bayesian inference. This process does not require the development of an entire GMM using Bayesian mixed-effects regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼发布了新的文献求助10
刚刚
1秒前
bkagyin应助kylin采纳,获得10
2秒前
3秒前
英俊的铭应助yao chen采纳,获得10
3秒前
去看海嘛发布了新的文献求助10
3秒前
3秒前
4秒前
ko_echo发布了新的文献求助10
4秒前
田様应助科研小神童采纳,获得10
4秒前
4秒前
4秒前
道松先生发布了新的文献求助10
4秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
海孩子发布了新的文献求助10
7秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得20
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
pumpkin发布了新的文献求助30
10秒前
FashionBoy应助淡然的妙芙采纳,获得10
11秒前
11秒前
Johnson完成签到 ,获得积分10
13秒前
13秒前
天真大神发布了新的文献求助10
15秒前
荞麦关注了科研通微信公众号
16秒前
小灰灰完成签到 ,获得积分10
16秒前
早日发paper完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159234
求助须知:如何正确求助?哪些是违规求助? 4353751
关于积分的说明 13556726
捐赠科研通 4197398
什么是DOI,文献DOI怎么找? 2302076
邀请新用户注册赠送积分活动 1302065
关于科研通互助平台的介绍 1247211