Efficient Cloud Server Deployment Under Demand Uncertainty

软件部署 云计算 计算机科学 业务 操作系统
作者
Rui Peng Liu,Konstantina Mellou,X. H. Gong,Beibin Li,Thomas Coffee,Jeevan Pathuri,David Simchi‐Levi,Ishai Menache
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2023.0372
摘要

Problem definition: Cloud computing is a multibillion-dollar business that draws substantial capital investments from large companies such as Amazon, Microsoft, and Google. Large cloud providers need to accommodate the growing demand for computing resources while avoiding unnecessary overprovisioning of hardware and operational costs. The underlying decision processes are challenging, as they involve long-term hardware and infrastructure investments under future demand uncertainty. In this paper, we introduce the cloud server deployment problem. One important aspect of the problem is that the infrastructure preparation work has to be planned for before server deployments can take place. Furthermore, a combination of temporal constraints has to be considered together with a variety of physical constraints. Methodology/results: We formulate the underlying optimization problem as a two-stage stochastic program. After carefully examining the demand data and on-the-ground deployment operations, we distill two structural properties on deployment throughput constraints and provide tightness results on a convex relaxation of the second stage. Based on that, we develop efficient cutting-plane methods that exploit the special structure of the problem and can accommodate different risk measures. We test our algorithms with real production traces from Microsoft Azure and demonstrate sizeable cost reductions. We show empirically that the algorithms remain optimal even when the two properties are not fully satisfied. Managerial implications: Cloud supply chain operations were largely executed manually due to their complexity and dynamic nature. In this paper, we show that the key decision processes can be systematically optimized. In particular, we demonstrate that accounting for the stochastic nature of demands results in substantial cost reductions in cloud server deployments. Another benefit of our stochastic optimization approach is the ability to seamlessly integrate configurable risk preferences of cloud providers. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0372 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ana发布了新的文献求助10
1秒前
blind完成签到,获得积分10
1秒前
小雨完成签到,获得积分10
2秒前
2秒前
纳纳椰完成签到,获得积分10
2秒前
3秒前
花玥鹿完成签到,获得积分10
5秒前
es发布了新的文献求助10
5秒前
5秒前
科研狗发布了新的文献求助30
6秒前
唐心发布了新的文献求助10
7秒前
若雨凌风应助ShakeLALALA采纳,获得100
7秒前
阳光的一应助典雅的俊驰采纳,获得10
7秒前
1阿发布了新的文献求助10
7秒前
8秒前
stk完成签到,获得积分10
8秒前
时尚白凡完成签到 ,获得积分10
9秒前
9秒前
9秒前
英姑应助皮皮的章鱼烧采纳,获得10
10秒前
英勇无声发布了新的文献求助10
12秒前
虚拟的荔枝完成签到,获得积分10
12秒前
研友_VZG7GZ应助宋十一采纳,获得10
12秒前
TTT发布了新的文献求助10
13秒前
cai发布了新的文献求助10
13秒前
15秒前
纽贝尔完成签到 ,获得积分10
16秒前
彭于晏应助懵懂的毛豆采纳,获得10
17秒前
纪沛儿完成签到,获得积分10
17秒前
香蕉觅云应助es采纳,获得10
17秒前
cai完成签到,获得积分10
19秒前
21秒前
21秒前
FashionBoy应助小巧的向露采纳,获得10
22秒前
24秒前
Candy发布了新的文献求助10
24秒前
yar应助chenjunji采纳,获得10
26秒前
江亦旋发布了新的文献求助10
27秒前
彩色的恋风完成签到,获得积分10
28秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897220
求助须知:如何正确求助?哪些是违规求助? 3441146
关于积分的说明 10820137
捐赠科研通 3166098
什么是DOI,文献DOI怎么找? 1749184
邀请新用户注册赠送积分活动 845175
科研通“疑难数据库(出版商)”最低求助积分说明 788492