Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study

医学 危险系数 四分位数 置信区间 内科学 心力衰竭 心脏病学 危险分层 队列
作者
Lovedeep Singh Dhingra,Arya Aminorroaya,Veer Sangha,Aline F Pedroso,Folkert W. Asselbergs,Luísa Campos Caldeira Brant,Sandhi Maria Barreto,Antônio Luiz Pinho Ribeiro,Harlan M. Krumholz,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:European Heart Journal [Oxford University Press]
被引量:2
标识
DOI:10.1093/eurheartj/ehae914
摘要

Abstract Background and Aims Current heart failure (HF) risk stratification strategies require comprehensive clinical evaluation. In this study, artificial intelligence (AI) applied to electrocardiogram (ECG) images was examined as a strategy to predict HF risk. Methods Across multinational cohorts in the Yale New Haven Health System (YNHHS), UK Biobank (UKB), and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), individuals without baseline HF were followed for the first HF hospitalization. An AI-ECG model that defines cross-sectional left ventricular systolic dysfunction from 12-lead ECG images was used, and its association with incident HF was evaluated. Discrimination was assessed using Harrell’s C-statistic. Pooled cohort equations to prevent HF (PCP-HF) were used as a comparator. Results Among 231 285 YNHHS patients, 4472 had primary HF hospitalizations over 4.5 years (inter-quartile range 2.5–6.6). In UKB and ELSA-Brasil, among 42 141 and 13 454 people, 46 and 31 developed HF over 3.1 (2.1–4.5) and 4.2 (3.7–4.5) years. A positive AI-ECG screen portended a 4- to 24-fold higher risk of new-onset HF [age-, sex-adjusted hazard ratio: YNHHS, 3.88 (95% confidence interval 3.63–4.14); UKB, 12.85 (6.87–24.02); ELSA-Brasil, 23.50 (11.09–49.81)]. The association was consistent after accounting for comorbidities and the competing risk of death. Higher probabilities were associated with progressively higher HF risk. Model discrimination was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. In YNHHS and ELSA-Brasil, incorporating AI-ECG with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone. Conclusions An AI model applied to a single ECG image defined the risk of future HF, representing a digital biomarker for stratifying HF risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助corner采纳,获得10
刚刚
温暖霸发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
4秒前
4秒前
liyang关注了科研通微信公众号
4秒前
4秒前
郑大王发布了新的文献求助30
5秒前
尛破孩完成签到,获得积分10
5秒前
震动的凌丝完成签到,获得积分10
6秒前
7秒前
爆米花应助chenfprich采纳,获得10
7秒前
7秒前
8秒前
8秒前
jinjinjin发布了新的文献求助10
8秒前
allinall发布了新的文献求助10
9秒前
开心的傲南完成签到,获得积分10
10秒前
11秒前
情怀应助laipuling采纳,获得10
11秒前
李钰莹关注了科研通微信公众号
12秒前
corner发布了新的文献求助10
12秒前
13秒前
郑大王完成签到,获得积分20
15秒前
歆煜发布了新的文献求助30
16秒前
怕孤单的血茗完成签到,获得积分10
16秒前
17秒前
18秒前
Augenstern完成签到 ,获得积分10
19秒前
19秒前
19秒前
读书妖精文亭逐完成签到,获得积分10
20秒前
liyang发布了新的文献求助10
20秒前
福缘发布了新的文献求助10
22秒前
所所应助难过亦丝采纳,获得10
22秒前
22秒前
chenfprich发布了新的文献求助10
22秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791491
求助须知:如何正确求助?哪些是违规求助? 3335911
关于积分的说明 10277959
捐赠科研通 3052606
什么是DOI,文献DOI怎么找? 1675161
邀请新用户注册赠送积分活动 803188
科研通“疑难数据库(出版商)”最低求助积分说明 761111