Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study

医学 危险系数 四分位数 置信区间 内科学 心力衰竭 心脏病学 危险分层 队列
作者
Lovedeep Singh Dhingra,Arya Aminorroaya,Veer Sangha,Aline F Pedroso,Folkert W. Asselbergs,Luísa Campos Caldeira Brant,Sandhi Maria Barreto,Antônio Luiz Pinho Ribeiro,Harlan M. Krumholz,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:European Heart Journal [Oxford University Press]
被引量:17
标识
DOI:10.1093/eurheartj/ehae914
摘要

Abstract Background and Aims Current heart failure (HF) risk stratification strategies require comprehensive clinical evaluation. In this study, artificial intelligence (AI) applied to electrocardiogram (ECG) images was examined as a strategy to predict HF risk. Methods Across multinational cohorts in the Yale New Haven Health System (YNHHS), UK Biobank (UKB), and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), individuals without baseline HF were followed for the first HF hospitalization. An AI-ECG model that defines cross-sectional left ventricular systolic dysfunction from 12-lead ECG images was used, and its association with incident HF was evaluated. Discrimination was assessed using Harrell’s C-statistic. Pooled cohort equations to prevent HF (PCP-HF) were used as a comparator. Results Among 231 285 YNHHS patients, 4472 had primary HF hospitalizations over 4.5 years (inter-quartile range 2.5–6.6). In UKB and ELSA-Brasil, among 42 141 and 13 454 people, 46 and 31 developed HF over 3.1 (2.1–4.5) and 4.2 (3.7–4.5) years. A positive AI-ECG screen portended a 4- to 24-fold higher risk of new-onset HF [age-, sex-adjusted hazard ratio: YNHHS, 3.88 (95% confidence interval 3.63–4.14); UKB, 12.85 (6.87–24.02); ELSA-Brasil, 23.50 (11.09–49.81)]. The association was consistent after accounting for comorbidities and the competing risk of death. Higher probabilities were associated with progressively higher HF risk. Model discrimination was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. In YNHHS and ELSA-Brasil, incorporating AI-ECG with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone. Conclusions An AI model applied to a single ECG image defined the risk of future HF, representing a digital biomarker for stratifying HF risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好困好困好困yyy完成签到 ,获得积分10
1秒前
1秒前
邓布利多发布了新的文献求助10
1秒前
wp0715发布了新的文献求助10
2秒前
Zhaojin完成签到,获得积分10
2秒前
郝文彩完成签到,获得积分10
3秒前
mhztc完成签到,获得积分10
3秒前
3秒前
专注易绿发布了新的文献求助10
3秒前
4秒前
txfxh完成签到,获得积分20
4秒前
大模型应助胆小鬼采纳,获得10
5秒前
5秒前
陌落关注了科研通微信公众号
5秒前
JamesPei应助刘超艺采纳,获得10
6秒前
Ronnie发布了新的文献求助10
6秒前
VERY发布了新的文献求助10
7秒前
7秒前
ding应助海拾月采纳,获得10
7秒前
8秒前
9秒前
华仔应助圆圆脸采纳,获得10
9秒前
9秒前
ding应助木子采纳,获得10
9秒前
邵绝山完成签到,获得积分10
10秒前
10秒前
深情安青应助Nienie采纳,获得10
10秒前
领导范儿应助wp0715采纳,获得10
10秒前
汪珍发布了新的文献求助10
10秒前
苏我入鹿发布了新的文献求助10
11秒前
斯文的绾绾完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
likaixuanzzz完成签到 ,获得积分10
13秒前
13秒前
14秒前
CipherSage应助wop111采纳,获得10
14秒前
晨gegeai发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4832067
求助须知:如何正确求助?哪些是违规求助? 4136828
关于积分的说明 12804779
捐赠科研通 3879675
什么是DOI,文献DOI怎么找? 2133835
邀请新用户注册赠送积分活动 1154016
关于科研通互助平台的介绍 1052386