亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting High-Risk Patients with Lung Adenocarcinoma: The Power of Plasma Cell-Related Genes

免疫疗法 肺癌 医学 肿瘤科 腺癌 内科学 免疫系统 转移 癌症 免疫学
作者
Jian Gao,Xianqiang Zhou,Weibin Tian,Junyi Xia,Lei Wang,Shen Yao
出处
期刊:Oncology [Karger Publishers]
卷期号:: 1-22
标识
DOI:10.1159/000543101
摘要

Background:The incidence of lung cancer remains high worldwide and is still the leading cause of cancer-related deaths globally.The primary reason for this is that the vast majority of patients are diagnosed only when the disease has progressed to an advanced stage or metastasized.Therefore,early diagnosis of lung cancer is crucial.Approximately 85% of lung cancers are non-small cell lung cancer (NSCLC),As a type of non-small cell lung cancer (NSCLC), lung adenocarcinoma is more prone to distant metastasis and has a poorer prognosis.It is often primarily treated with immunotherapy.Currently, immunotherapy mainly focuses on T cells,However, with the deepening of research, plasma cells, which have long been considered non-essential in anti-tumor responses, have been increasingly recognized for their critical role. Methods:This study integrates data from TCGA, Tumor Immune Single-cell Hub 2, and 10X databases, focusing on plasma cells. Through clustering analysis and LASSO regression analysis, it aims to establish a predictive model for high-risk LUAD patients and further explore the relationship between the risk model and immune cells, with the goal of providing potential predictions for the efficacy of immunotherapy for patients.Additionally, we conducted drug sensitivity analysis and immune checkpoint analysis to identify drugs with potential benefits for the clinical management of high-risk patients.At the same time, we performed further immune checkpoint analysis to identify potential therapeutic targets for LUAD.Results:By integrating the TCGA, Tumor Immune Single-cell Hub 2, and 10X databases, and focusing on plasma cells through clustering analysis and LASSO regression analysis, we established a predictive model for high-risk LUAD patients involving four feature genes: BEX5, CASP10, EPSTI1, and LY9. The ROC and results demonstrate that our model has strong predictive performance. Additionally, we found that the risk model is closely related to immune cells, providing potential for predicting the efficacy of immunotherapy for patients. Subsequently, we conducted drug sensitivity analysis and immune checkpoint analysis, revealing that the majority of drugs are more sensitive to low-risk patients, while ABT-888, AS601245, and CCT007093 may have greater potential clinical benefits for high-risk patients. Immune checkpoint analysis showed significant differences in the expression of ADORA2A, BTLA, CD276, CD27, CD28, CD40LG, CD48, and TNFRSF14 between high-risk and low-risk patient groups, suggesting their potential as therapeutic targets for LUAD..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
Tayzon完成签到 ,获得积分10
19秒前
54秒前
卑微学术人完成签到 ,获得积分10
55秒前
科研通AI5应助隐形的绮山采纳,获得10
1分钟前
阔达的非笑完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
韩凡发布了新的文献求助30
1分钟前
白菜完成签到,获得积分10
1分钟前
taku完成签到 ,获得积分10
1分钟前
NexusExplorer应助faye采纳,获得10
2分钟前
2分钟前
深情安青应助Lee采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
LiS发布了新的文献求助10
2分钟前
今后应助想飞的兔子采纳,获得10
2分钟前
2分钟前
大模型应助我爱高数采纳,获得10
2分钟前
2分钟前
2分钟前
我爱高数完成签到,获得积分10
3分钟前
4分钟前
4分钟前
LiS发布了新的文献求助10
4分钟前
大小罐子发布了新的文献求助10
4分钟前
上官若男应助科研通管家采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
传奇3应助矮小的白猫采纳,获得10
4分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Economics of Financial Cooperatives: Income Distribution, Political Economy and Regulation 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827244
求助须知:如何正确求助?哪些是违规求助? 3369590
关于积分的说明 10456506
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699756
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251