Gait-to-Contact (G2C): A novel deep learning framework to predict total knee replacement wear from gait patterns

步态 物理医学与康复 计算机科学 步态分析 人工智能 医学
作者
Mattia Perrone,Scott Simmons,Philip Malloy,Catherine Yuh,John T. Martin,Steven P. Mell
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.09.27.24314383
摘要

Background: Total knee replacement (TKR) is the most common inpatient surgery in the US. Studies leveraging finite element analysis (FEA) models have shown that variability of gait patterns can lead to significant variability of wear rates in TKR settings. However, FEA models can be resource-intensive and time-consuming to execute, hindering further research in this area. This study introduces a novel deep learning-based surrogate modeling approach aimed at significantly reducing computational costs and processing time compared to traditional FEA models. Methods: A published method was used to generate 314 variations of ISO14243-3(2014) anterior/posterior translation, internal/external rotation, flexion/extension, and axial loading time series, and a validated FEA model was used to calculate linear wear distribution on the polyethylene liner. A deep learning model featuring a transformer-CNN based encoder-decoder architecture was trained to predict linear wear distribution using gait pattern time series as input. Model performance was evaluated by comparing the deep learning and FEA model predictions using metrics such as mean absolute percentage error (MAPE) for relevant geometric features of the wear scar, structural similarity index measure (SSIM) and normalized mutual information (NMI). Results: The deep learning model significantly reduced the computational time for generating wear predictions compared to FEA, with the former training and inferring in minutes, and the latter requiring days. Comparisons of deep learning model wear map predictions to FEA results yielded MAPE values below 6% for most of the variables and SSIM and NMI values above 0.88, indicating a high level of agreement. Conclusion: The deep learning approach provides a promising alternative to FEA for predicting wear in TKR, with substantial reductions in computational time and comparable accuracy. Future research will aim to apply this methodology to clinical patient data, which could lead to more personalized and timely interventions in TKR settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dream123完成签到,获得积分10
1秒前
1秒前
余喆完成签到,获得积分10
1秒前
2秒前
哈哈完成签到,获得积分10
2秒前
佟韩发布了新的文献求助10
2秒前
3秒前
梅西完成签到 ,获得积分10
3秒前
3秒前
王文丰发布了新的文献求助10
3秒前
xiaobai123456发布了新的文献求助10
3秒前
上岸完成签到,获得积分10
3秒前
dd完成签到,获得积分10
3秒前
贺雨曦发布了新的文献求助20
4秒前
orixero应助joinn采纳,获得10
4秒前
整齐的萝完成签到,获得积分10
6秒前
鲤鱼发布了新的文献求助10
6秒前
哈哈发布了新的文献求助10
7秒前
呼呼发布了新的文献求助10
8秒前
在水一方应助fjhsg25采纳,获得10
8秒前
9秒前
9秒前
Zq完成签到 ,获得积分10
10秒前
10秒前
豆豆突发布了新的文献求助100
10秒前
10秒前
阿兰发布了新的文献求助10
10秒前
10秒前
愉快的夏菡完成签到,获得积分10
10秒前
怡然的乌完成签到,获得积分10
12秒前
Isaiah发布了新的文献求助30
12秒前
mingfeng_li完成签到,获得积分10
12秒前
科研通AI6应助苯氮小羊采纳,获得10
13秒前
黑猫发布了新的文献求助10
14秒前
黄石完成签到,获得积分10
14秒前
田燕华完成签到,获得积分10
15秒前
星辰大海应助呼呼采纳,获得10
15秒前
VirgoYn完成签到,获得积分10
15秒前
孙文杰发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600283
求助须知:如何正确求助?哪些是违规求助? 4685999
关于积分的说明 14841023
捐赠科研通 4676153
什么是DOI,文献DOI怎么找? 2538671
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167