EviD-GAN: Improving GAN With an Infinite Set of Discriminators at Negligible Cost

集合(抽象数据类型) 光电子学 材料科学 计算机科学 程序设计语言
作者
Aurele Tohokantche Gnanha,Wenming Cao,Xudong Mao,Si Wu,Hau−San Wong,Qing Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3388197
摘要

Ensemble learning improves the capability of convolutional neural network (CNN)-based discriminators, whose performance is crucial to the quality of generated samples in generative adversarial network (GAN). However, this learning strategy results in a significant increase in the number of parameters along with computational overhead. Meanwhile, the suitable number of discriminators required to enhance GAN performance is still being investigated. To mitigate these issues, we propose an evidential discriminator for GAN (EviD-GAN)-code is available at https://github.com/Tohokantche/EviD-GAN-to learn both the model (epistemic) and data (aleatoric) uncertainties. Specifically, by analyzing three GAN models, the relation between the distribution of discriminator's output and the generator performance has been discovered yielding a general formulation of GAN framework. With the above analysis, the evidential discriminator learns the degree of aleatoric and epistemic uncertainties via imposing a higher order distribution constraint over the likelihood as expressed in the discriminator's output. This constraint can learn an ensemble of likelihood functions corresponding to an infinite set of discriminators. Thus, EviD-GAN aggregates knowledge through the ensemble learning of discriminator that allows the generator to benefit from an informative gradient flow at a negligible computational cost. Furthermore, inspired by the gradient direction in maximum mean discrepancy (MMD)-repulsive GAN, we design an asymmetric regularization scheme for EviD-GAN. Unlike MMD-repulsive GAN that performs at the distribution level, our regularization scheme is based on a pairwise loss function, performs at the sample level, and is characterized by an asymmetric behavior during the training of generator and discriminator. Experimental results show that the proposed evidential discriminator is cost-effective, consistently improves GAN in terms of Frechet inception distance (FID) and inception score (IS), and performs better than other competing models that use multiple discriminators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清酒完成签到,获得积分20
1秒前
2秒前
sdl发布了新的文献求助10
2秒前
2秒前
Tony完成签到,获得积分10
3秒前
bkagyin应助海王星采纳,获得10
4秒前
文艺裘完成签到,获得积分10
5秒前
5秒前
隐形曼青应助耍酷灵雁采纳,获得10
6秒前
6秒前
科研通AI5应助申卫双采纳,获得10
6秒前
6秒前
乐观的仇天完成签到,获得积分10
6秒前
7秒前
tipang发布了新的文献求助10
7秒前
Jasper应助lhy采纳,获得10
9秒前
搞科研我是认真的完成签到,获得积分10
9秒前
辛勤的小天鹅完成签到,获得积分10
9秒前
zzl完成签到,获得积分10
10秒前
踏实的兔子完成签到,获得积分10
11秒前
爆米花应助子唯采纳,获得10
11秒前
11秒前
兜里面有怪兽完成签到,获得积分10
12秒前
12秒前
dll完成签到 ,获得积分10
12秒前
NexusExplorer应助李至安采纳,获得10
12秒前
haki完成签到,获得积分10
12秒前
13秒前
奶黄包发布了新的文献求助30
13秒前
文艺的海豚完成签到,获得积分10
13秒前
zzz完成签到,获得积分10
14秒前
光亮雁玉完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
M张完成签到,获得积分10
16秒前
生菜发布了新的文献求助10
17秒前
hh完成签到,获得积分10
17秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238921
求助须知:如何正确求助?哪些是违规求助? 3772675
关于积分的说明 11847956
捐赠科研通 3428534
什么是DOI,文献DOI怎么找? 1881611
邀请新用户注册赠送积分活动 933811
科研通“疑难数据库(出版商)”最低求助积分说明 840575