Effects of AI Affordances on Student Engagement in EFL Classrooms: A Structural Equation Modelling and Latent Profile Analysis

结构方程建模 功能可见性 数学教育 心理学 计算机科学 认知心理学 机器学习
作者
Jinfen Xu,Juan Li
出处
期刊:European Journal of Education [Wiley]
卷期号:59 (4) 被引量:16
标识
DOI:10.1111/ejed.12808
摘要

ABSTRACT Various AI technologies have been extensively introduced in language learning, showing positive impacts on students' learning, especially on their classroom‐based engagement. Yet, AI's comprehensive affordances as well as influences across different cohorts of student engagement remain underexplored. Given this, the current study, employing structural equation modelling (SEM), delineated the factor structures and predictive relationships of AI affordances and student engagement. Besides, to clarify the variations across different engagement subgroups, the study also explored latent profiles of student engagement and their moderating effects through latent profile analysis (LPA). SEM and LPA were conducted using AMOS 23 and Mplus 8, respectively. The participants comprised 408 undergraduate students from various universities in China, who have engaged in English as a Foreign Language (EFL) learning within AI‐empowered classroom environments. Factor analysis indicated that both AI affordances and student engagement exhibited two second‐order factor structures. AI affordances were categorised into four dimensions: convenience, interactivity, personalisation and social presence. Student engagement was also divided into four dimensions: cognitive, behavioural, emotional and social engagement. Additionally, AI affordances significantly affected student engagement, with this impact being moderated by different student engagement profiles. Student engagement was segmented into three sub‐groups: non/low engagement, high engagement and moderate engagement. Therein, AI affordances showed a notable effect on the non‐/low engagement group. These findings provide a solid foundation for future research in the integration of AI technologies with language learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助YDX采纳,获得10
2秒前
3秒前
sure完成签到 ,获得积分10
3秒前
THD发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
科yt完成签到,获得积分10
8秒前
8秒前
阳光晓蓝发布了新的文献求助10
9秒前
Shihan发布了新的文献求助10
9秒前
10秒前
11秒前
Lore发布了新的文献求助10
12秒前
12秒前
YDX发布了新的文献求助10
14秒前
aaatan完成签到 ,获得积分10
15秒前
15秒前
青争唔发布了新的文献求助10
17秒前
17秒前
酷波er应助268采纳,获得10
17秒前
小小的手心完成签到,获得积分10
17秒前
明理雨莲完成签到,获得积分10
17秒前
THD完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助50
18秒前
21秒前
Amon完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
共享精神应助Shihan采纳,获得10
23秒前
青争唔完成签到,获得积分20
23秒前
汉堡包应助Hanyi采纳,获得10
25秒前
阳光晓蓝完成签到,获得积分10
25秒前
Innocent_Story完成签到,获得积分10
26秒前
甜甜万宝路完成签到,获得积分10
26秒前
泽宇发布了新的文献求助10
26秒前
kangkang完成签到 ,获得积分10
26秒前
29秒前
Amberwdd发布了新的文献求助10
29秒前
29秒前
糟糕的铁锤完成签到,获得积分0
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5798154
求助须知:如何正确求助?哪些是违规求助? 5789111
关于积分的说明 15496331
捐赠科研通 4924804
什么是DOI,文献DOI怎么找? 2651068
邀请新用户注册赠送积分活动 1598241
关于科研通互助平台的介绍 1553128