MT-HTI: a novel approach based on metapath2Vec and transformer for herb-target interaction prediction

计算机科学 机器学习 人工智能 预测建模 变压器 图形 深度学习 理论计算机科学 工程类 电气工程 电压
作者
Lianzhong Zhang,Meishun Li,Xiumin Shi,Lu Wang
标识
DOI:10.1117/12.3044440
摘要

In the context of the ongoing progress of modern technology, research into Traditional Chinese Medicine (TCM) is being deepened. Advances in modern pharmacology and molecular biology are progressively uncovering the mechanisms of action, efficacy principles, and predictive effects of the components of TCM. Faced with the complexity of TCM components and the intricacies of their mechanisms of action, the traditional compound-target relationship model has limitations in its predictive capabilities. At present, constructing complex heterogeneous graph networks and applying machine learning or deep learning for prediction have become a trend. This paper introduces a novel prediction method based on the efficacy-herb-target-pathway network, with the innovation of incorporating the Metapath2vec. This algorithm trains the model on a heterogeneous graph using manually defined metapaths, capturing the complex relationships within the network more effectively than the traditional node2vec algorithm. In addition, we have developed a custom prediction module based on the transformer architecture, which significantly enhances the accuracy of the predictions. Our method has demonstrated outstanding performance in terms of AUC_ROC, AUC_PR, and F1 evaluation metrics, as evidenced by testing on the collected dataset. This approach not only enhances the accuracy of predictions but also offers a new perspective and tool for predicting TCM targets, thereby adding more practical value to the development of traditional Chinese medicine. MT-HTI is freely available at https://github.comShiLab-GitHub/MT-HTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHL发布了新的文献求助10
刚刚
chen完成签到,获得积分10
1秒前
慕青应助义气的面包采纳,获得10
1秒前
美满安青发布了新的文献求助10
1秒前
科研通AI6应助林沐采纳,获得10
1秒前
小蘑菇应助爱吃氯丙嗪采纳,获得10
1秒前
可爱的函函应助hohn采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
一一完成签到,获得积分20
3秒前
风中凡白完成签到,获得积分10
4秒前
morlison完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
机灵的小熊猫完成签到,获得积分10
4秒前
达落完成签到,获得积分10
5秒前
大力尔云完成签到 ,获得积分10
5秒前
5秒前
畅快安白完成签到,获得积分10
5秒前
Llllllxxxxxxx发布了新的文献求助10
6秒前
林沐完成签到,获得积分20
7秒前
佳佳完成签到,获得积分20
7秒前
7秒前
科研通AI5应助liu采纳,获得10
7秒前
研友_VZG7GZ应助单薄的沛槐采纳,获得10
7秒前
陈七完成签到,获得积分10
7秒前
科研通AI6应助dream375采纳,获得10
8秒前
多多完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
酷酷水壶发布了新的文献求助10
8秒前
9秒前
邢123发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
结构随机动力学 1000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4671088
求助须知:如何正确求助?哪些是违规求助? 4050280
关于积分的说明 12525977
捐赠科研通 3744022
什么是DOI,文献DOI怎么找? 2067708
邀请新用户注册赠送积分活动 1097082
科研通“疑难数据库(出版商)”最低求助积分说明 977289