已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine-learning approach for stress detection using wearable sensors in free-living environments

随机森林 支持向量机 可穿戴计算机 计算机科学 决策树 二元分类 机器学习 二进制数 人工智能 F1得分 嵌入式系统 数学 算术
作者
Mohamed Abd Al-Alim,Roaa I. Mubarak,Nancy M. Salem,Ibrahim Sadek
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108918-108918 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108918
摘要

Stress is a psychological condition resulting from the body's response to challenging situations, which can negatively impact physical and mental health if experienced over prolonged periods. Early detection of stress is crucial to prevent chronic health problems. Wearable sensors offer an effective solution for continuous and real-time stress monitoring due to their non-intrusive nature and ability to monitor vital signs, e.g., heart rate and activity. Typically, most existing research has focused on data collected in controlled environments. Yet, our study aims to propose a machine learning-based approach for detecting stress in a free-living environment using wearable sensors. We utilized the SWEET dataset, which includes data from 240 subjects collected via electrocardiography (ECG), skin temperature (ST), and skin conductance (SC). We assessed four machine learning models, i.e., K-Nearest Neighbors (KNN), Support Vector Classification (SVC), Decision Tree (DT), Random Forest (RF), and XGBoost (XGB) in four different settings. This study evaluates the performance of various machine learning models for stress classification using the SWEET dataset. The analysis included two binary classification scenarios (with and without SMOTE) and two multi-class classification scenarios (with and without SMOTE). The Random Forest model demonstrated superior performance in the binary classification without SMOTE, achieving an accuracy of 98.29 % and an F1-score of 97.89 %. For binary classification with SMOTE, the K-Nearest Neighbors model performed best, with an accuracy of 95.70 % and an F1-score of 95.70 %. In the three-level classification without SMOTE, the Random Forest model again excelled, achieving an accuracy of 97.98 % and an F1-score of 97.22 %. For three-level classification with SMOTE, XGBoost showed the highest performance, with an accuracy and F1-score of 98.98 %. These results highlight the effectiveness of different models under various conditions, emphasizing the importance of model selection and preprocessing techniques in enhancing classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwdd发布了新的文献求助10
3秒前
3秒前
小二郎应助单薄的采萱采纳,获得10
5秒前
就看最后一篇完成签到 ,获得积分10
5秒前
7秒前
张张发布了新的文献求助10
7秒前
米团完成签到,获得积分10
10秒前
11秒前
葛怀锐完成签到 ,获得积分10
12秒前
小章鱼发布了新的文献求助10
14秒前
14秒前
冉冉爱吃西瓜完成签到,获得积分10
15秒前
15秒前
程新亮完成签到 ,获得积分10
17秒前
Z123完成签到,获得积分10
18秒前
21秒前
宗友绿发布了新的文献求助10
21秒前
风趣的灵枫完成签到 ,获得积分10
22秒前
科研通AI5应助Rex采纳,获得10
23秒前
bkagyin应助小章鱼采纳,获得10
24秒前
Billy完成签到,获得积分0
26秒前
12123完成签到 ,获得积分10
27秒前
uikymh完成签到 ,获得积分0
34秒前
香蕉觅云应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
39秒前
Billy应助科研通管家采纳,获得30
39秒前
babylow完成签到,获得积分10
40秒前
hello2001完成签到 ,获得积分10
42秒前
43秒前
欣喜的人龙完成签到 ,获得积分10
45秒前
47秒前
47秒前
48秒前
Rex发布了新的文献求助10
48秒前
48秒前
山山完成签到 ,获得积分10
49秒前
迷路博完成签到,获得积分10
51秒前
luyee发布了新的文献求助10
52秒前
紧张的海燕完成签到,获得积分10
52秒前
绿海发布了新的文献求助10
53秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819819
求助须知:如何正确求助?哪些是违规求助? 3362720
关于积分的说明 10418416
捐赠科研通 3080964
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768482