An Adaptive Hybrid Brain Computer Interface for Hand Function Rehabilitation of Stroke Patients

脑-机接口 运动表象 计算机科学 脑电图 康复 神经解码 接口(物质) 解码方法 语音识别 物理医学与康复 人工智能 医学 心理学 神经科学 物理疗法 最大气泡压力法 电信 并行计算 气泡
作者
Jianqiang Su,Jiaxing Wang,Weiqun Wang,Yihan Wang,Chayut Bunterngchit,Pu Zhang,Zeng‐Guang Hou
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 2950-2960 被引量:1
标识
DOI:10.1109/tnsre.2024.3431025
摘要

Motor imagery (MI) based brain computer interface (BCI) has been extensively studied to improve motor recovery for stroke patients by inducing neuroplasticity. However, due to the lower spatial resolution and signal-to-noise ratio (SNR) of electroencephalograph (EEG), MI based BCI system that involves decoding hand movements within the same limb remains lower classification accuracy and poorer practicality. To overcome the limitations, an adaptive hybrid BCI system combining MI and steady-state visually evoked potential (SSVEP) is developed to improve decoding accuracy while enhancing neural engagement. On the one hand, the SSVEP evoked by visual stimuli based on action-state flickering coding approach significantly improves the recognition accuracy compared to the pure MI based BCI. On the other hand, to reduce the impact of SSVEP on MI due to the dual-task interference effect, the event-related desynchronization (ERD) based neural engagement is monitored and employed for feedback in real-time to ensure the effective execution of MI tasks. Eight healthy subjects and six post-stroke patients were recruited to verify the effectiveness of the system. The results showed that the four-class gesture recognition accuracies of healthy individuals and patients could be improved to 94.37 ± 4.77 % and 79.38 ± 6.26 %, respectively. Moreover, the designed hybrid BCI could maintain the same degree of neural engagement as observed when subjects solely performed MI tasks. These phenomena demonstrated the interactivity and clinical utility of the developed system for the rehabilitation of hand function in stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
筝zheng完成签到,获得积分10
3秒前
扶桑完成签到,获得积分10
3秒前
个性襄完成签到,获得积分10
4秒前
fan发布了新的文献求助10
4秒前
4秒前
结实星星发布了新的文献求助10
6秒前
李欣思发布了新的文献求助10
7秒前
9秒前
栗子鱼发布了新的文献求助10
9秒前
panyi完成签到,获得积分10
10秒前
10秒前
12秒前
lh完成签到,获得积分10
12秒前
lizhiqian2024发布了新的文献求助10
13秒前
栗子鱼完成签到,获得积分10
13秒前
14秒前
科研通AI5应助鲤鱼幼翠采纳,获得10
15秒前
科目三应助chenzi采纳,获得30
15秒前
丘比特应助完美芒果采纳,获得10
16秒前
王星星发布了新的文献求助10
17秒前
ray完成签到,获得积分10
18秒前
凡`完成签到,获得积分10
20秒前
20秒前
20秒前
蔚111完成签到 ,获得积分10
20秒前
虚心的代男完成签到,获得积分10
21秒前
23秒前
bkagyin应助aqua采纳,获得10
26秒前
鲤鱼幼翠发布了新的文献求助10
26秒前
西红柿完成签到,获得积分0
26秒前
26秒前
terry发布了新的文献求助10
28秒前
28秒前
狂野未来完成签到,获得积分10
30秒前
30秒前
stellafreeman发布了新的文献求助10
30秒前
完美芒果发布了新的文献求助10
31秒前
结实星星发布了新的文献求助10
32秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784309
求助须知:如何正确求助?哪些是违规求助? 3329382
关于积分的说明 10242030
捐赠科研通 3044893
什么是DOI,文献DOI怎么找? 1671397
邀请新用户注册赠送积分活动 800254
科研通“疑难数据库(出版商)”最低求助积分说明 759298