A Particle Swarm Optimization–Adaptive Weighted Delay Velocity-Based Fast-Converging Maximum Power Point Tracking Algorithm for Solar PV Generation System

粒子群优化 算法 爬山 计算机科学 光伏系统 最大功率点跟踪 趋同(经济学) 最大功率原理 功率(物理) 控制理论(社会学) 最大值和最小值 数学优化 数学 工程类 人工智能 数学分析 物理 控制(管理) 量子力学 逆变器 经济增长 电气工程 经济
作者
Md Adil Azad,Mohd Tariq,Adil Sarwar,Injila Sajid,Shafiq Ahmad,Farhad Ilahi Bakhsh,Abdelaty Edrees Sayed
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (21): 15335-15335 被引量:12
标识
DOI:10.3390/su152115335
摘要

Photovoltaic (PV) arrays have a considerably lower output when exposed to partial shadowing (PS). Whilst adding bypass diodes to the output reduces PS’s impact, this adjustment causes many output power peaks. Because of their tendency to converge to local maxima, traditional algorithms like perturb and observe and hill-climbing should not be used to track the optimal peak. The tracking of the optimal peak is achieved by employing a range of artificial intelligence methodologies, such as utilizing an artificial neural network and implementing control based on fuzzy logic principles. These algorithms perform satisfactorily under PS conditions but their training method necessitates a sizable quantity of data which result in placing an unnecessary demand on CPU memory. In order to achieve maximum power point tracking (MPPT) with fast convergence, minimal power fluctuations, and excellent stability, this paper introduces a novel optimization algorithm named PSO-AWDV (particle swarm optimization–adaptive weighted delay velocity). This algorithm employs a stochastic search approach, which involves the random exploration of the search space, to accomplish these goals. The efficacy of the proposed algorithm is demonstrated by conducting experiments on a series-connected configuration of four modules, under different levels of solar radiation. The algorithm successfully gets rid of the problems brought on by current traditional and AI-based methods. The PSO-AWDV algorithm stands out for its simplicity and reduced computational complexity when compared to traditional PSO and its variant PSO-VC, while excelling in locating the maximum power point (MPP) even in intricate shading scenarios, encompassing partial shading conditions and notable insolation fluctuations. Furthermore, its tracking efficiency surpasses that of both conventional PSO and PSO-VC. To further validate our results, we conducted a real-time hardware-in-the-loop (HIL) emulation, which confirmed the superiority of the PSO-AWDV algorithm over traditional and AI-based methods. Overall, the proposed algorithm offers a practical solution to the challenges of MPPT under PS conditions, with promising outcomes for real-world PV applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呐呐呐发布了新的文献求助10
2秒前
2秒前
华仔应助zz采纳,获得10
2秒前
3秒前
dingyuting完成签到,获得积分10
3秒前
香蕉觅云应助erhao采纳,获得10
3秒前
Jimmy Ko发布了新的文献求助10
3秒前
科研通AI5应助现代的芹采纳,获得10
5秒前
千叶儿完成签到,获得积分10
5秒前
豆包发布了新的文献求助10
6秒前
妮儿发布了新的文献求助10
6秒前
想人陪的马里奥完成签到,获得积分10
7秒前
隐形曼青应助武雨寒采纳,获得10
7秒前
易福林发布了新的文献求助10
7秒前
8秒前
banlu完成签到,获得积分10
8秒前
8秒前
10秒前
12秒前
Yili发布了新的文献求助10
13秒前
13秒前
浮游应助bxayui采纳,获得10
14秒前
14秒前
uuu发布了新的文献求助10
14秒前
godccc发布了新的文献求助10
14秒前
15秒前
hu发布了新的文献求助30
16秒前
16秒前
17秒前
飞快的书蕾完成签到,获得积分20
17秒前
牧风发布了新的文献求助10
18秒前
研友_VZG7GZ应助Amberwdd采纳,获得10
19秒前
20秒前
现代的芹发布了新的文献求助10
20秒前
暖暖发布了新的文献求助10
20秒前
开朗啤酒发布了新的文献求助10
21秒前
21秒前
浮游应助小肖采纳,获得10
21秒前
22秒前
忧虑的靖巧完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170420
求助须知:如何正确求助?哪些是违规求助? 4361183
关于积分的说明 13578837
捐赠科研通 4208380
什么是DOI,文献DOI怎么找? 2308143
邀请新用户注册赠送积分活动 1307537
关于科研通互助平台的介绍 1254343