CTransCNN: Combining transformer and CNN in multilabel medical image classification

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 串联(数学) 上下文图像分类 变压器 机器学习 特征(语言学) 图像(数学) 数学 物理 组合数学 电压 量子力学 语言学 哲学
作者
Xin Wu,Yue Feng,Hong Xu,Zhuosheng Lin,Tao Chen,Shengke Li,Shihan Qiu,Qichao Liu,Yuangang Ma,Shuangsheng Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:281: 111030-111030 被引量:29
标识
DOI:10.1016/j.knosys.2023.111030
摘要

Multilabel image classification aims to assign images to multiple possible labels. In this task, each image may be associated with multiple labels, making it more challenging than the single-label classification problems. For instance, convolutional neural networks (CNNs) have not met the performance requirement in utilizing statistical dependencies between labels in this study. Additionally, data imbalance is a common problem in machine learning that needs to be considered for multilabel medical image classification. Furthermore, the concatenation of a CNN and a transformer suffers from the disadvantage of lacking direct interaction and information exchange between the two models. To address these issues, we propose a novel hybrid deep learning model called CTransCNN. This model comprises three main components in both the CNN and transformer branches: a multilabel multihead attention enhanced feature module (MMAEF), a multibranch residual module (MBR), and an information interaction module (IIM). The MMAEF enables the exploration of implicit correlations between labels, the MBR facilitates model optimization, and the IIM enhances feature transmission and increases nonlinearity between the two branches to help accomplish the multilabel medical image classification task. We evaluated our approach using publicly available datasets, namely the ChestX-ray11 and NIH ChestX-ray14, along with our self-constructed traditional Chinese medicine tongue dataset (TCMTD). Extensive multilabel image classification experiments were conducted comparing our approach with excellent methods. The experimental results demonstrate that the framework we have developed exhibits strong competitiveness compared to previous research. Its robust generalization ability makes it applicable to other medical multilabel image classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
已绕晕完成签到,获得积分10
1秒前
SYLH应助李健采纳,获得10
2秒前
天天快乐应助向往采纳,获得10
2秒前
田小姐发布了新的文献求助10
3秒前
Maisie完成签到,获得积分10
3秒前
5秒前
科研通AI2S应助派大星采纳,获得10
5秒前
mayue发布了新的文献求助10
5秒前
6秒前
6秒前
SYLH应助李健采纳,获得10
7秒前
7秒前
任性的天空完成签到,获得积分10
7秒前
X2Y2622完成签到,获得积分10
7秒前
7秒前
8秒前
清脆三问完成签到,获得积分10
9秒前
可爱的函函应助哇哈哈采纳,获得10
9秒前
10秒前
11秒前
木昜发布了新的文献求助10
11秒前
11秒前
12秒前
华仔应助田小姐采纳,获得10
12秒前
12秒前
慕青应助lMiraclel采纳,获得10
12秒前
c97发布了新的文献求助10
12秒前
12秒前
12秒前
刘刘发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
Yao6666发布了新的文献求助10
14秒前
Accepted完成签到,获得积分10
14秒前
14秒前
SYLH应助李健采纳,获得10
14秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801768
求助须知:如何正确求助?哪些是违规求助? 3347564
关于积分的说明 10334227
捐赠科研通 3063725
什么是DOI,文献DOI怎么找? 1682035
邀请新用户注册赠送积分活动 807871
科研通“疑难数据库(出版商)”最低求助积分说明 763921