CatBoost algorithm for estimating maize above-ground biomass using unmanned aerial vehicle-based multi-source sensor data and SPAD values

传感器融合 测距 随机森林 阶段(地层学) 生物量(生态学) 支持向量机 大数据 精准农业 航程(航空) 算法 遥感 计算机科学 环境科学 数据挖掘 工程类 人工智能 农业 农学 地理 航空航天工程 古生物学 考古 生物 电信
作者
Weiguang Zhai,Changchun Li,Shuaipeng Fei,Yanghua Liu,Fan Ding,Qian Cheng,Zhen Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:214: 108306-108306 被引量:24
标识
DOI:10.1016/j.compag.2023.108306
摘要

The rapid and accurate estimation of maize above-ground biomass (AGB) is pivotal for precise agricultural management. The rapid evolution of unmanned aerial vehicles (UAVs) and sensor technology has introduced a novel method for obtaining AGB information. Nevertheless, individual sensors may lack comprehensive data, leading to reduced AGB estimation accuracy in certain scenarios. This study collected UAV multi-spectral (MS) and thermal infrared (TIR) data, alongside soil and plant analyzer development (SPAD) values, from maize across multiple growth stages (jointing, trumpet, and big trumpet) during 2022 and 2023. Diverse data fusion programs were devised to explore the potential of combining multi-source sensor data with SPAD values to estimate AGB. The efficacy of CatBoost was evaluated and benchmarked against Support Vector Regression (SVR) and Random Forest Regression (RFR) algorithms. For the entire growth, findings reveal that the fusion of multi-source sensor data (MS + TIR) can mitigate the data insufficiency in single-sensor estimations. The resulting R2 values range from 0.608 to 0.817. Optimal estimation outcomes were achieved by the fusion of multi-source sensor data with SPAD values (MS + TIR + SPAD), yielding R2 values ranging from 0.685 to 0.872. For a single growth stage, there are variations in the estimation accuracy across different growth stages. From the jointing stage to the big trumpet stage, the estimation accuracy consistently increases, with the highest accuracy observed during the big trumpet stage, with R2 ranging from 0.721 to 0.901. Additionally, in alignment with the results for the entire growth stage, the fusion of multi-source sensor data with SPAD values still yields the highest estimation accuracy during different growth stages. In a comparison of different machine learning algorithms, for both the entire growth stage and single growth stages, SVR, RFR, and CatBoost achieved R2 values ranging from 0.305 to 0.824, 0.368 to 0.881, and 0.451 to 0.901, respectively. Notably, the CatBoost algorithm exhibited heightened estimation accuracy. The fusion of multi-source sensor data with SPAD values combined with the CatBoost algorithm results in accurate and reliable maize AGB estimation accuracy. This high-throughput approach to crop phenotyping is characterized by speed and accuracy and serves as a valuable reference for rapidly acquiring AGB information in this geographical region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaoxiao完成签到,获得积分10
1秒前
选课完成签到,获得积分10
1秒前
安静依琴完成签到,获得积分10
2秒前
婷婷大侠发布了新的文献求助10
8秒前
唐禹嘉完成签到 ,获得积分10
9秒前
吃的完成签到,获得积分10
9秒前
帕金森完成签到,获得积分10
10秒前
13秒前
8R60d8应助kiwi采纳,获得10
13秒前
鹿璐完成签到,获得积分10
13秒前
14秒前
14秒前
DoggyBadiou完成签到,获得积分20
14秒前
脑洞疼应助flymove采纳,获得10
15秒前
鹿冶完成签到 ,获得积分10
17秒前
18秒前
kryptonite完成签到 ,获得积分10
18秒前
DoggyBadiou发布了新的文献求助10
18秒前
celine发布了新的文献求助10
19秒前
20秒前
Erich完成签到 ,获得积分10
23秒前
顺利毕业完成签到 ,获得积分10
24秒前
zhi完成签到,获得积分10
26秒前
遂安完成签到,获得积分10
29秒前
hahaha完成签到,获得积分10
30秒前
田田完成签到,获得积分10
30秒前
最棒哒完成签到 ,获得积分10
31秒前
如烈火如止水完成签到,获得积分10
34秒前
婷婷大侠完成签到,获得积分10
37秒前
细胞呵呵完成签到,获得积分10
38秒前
科研通AI2S应助hky采纳,获得10
39秒前
麻辣牛蛙给麻辣牛蛙的求助进行了留言
40秒前
44秒前
45秒前
flymove发布了新的文献求助10
48秒前
只喝白开水完成签到 ,获得积分10
49秒前
彭于晏应助乔心采纳,获得10
50秒前
hky完成签到,获得积分10
51秒前
风趣尔琴发布了新的文献求助10
51秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726