Enforcing continuous symmetries in physics-informed neural network for solving forward and inverse problems of partial differential equations

偏微分方程 齐次空间 人工神经网络 Korteweg–de Vries方程 数学 反问题 应用数学 计算机科学 数学分析 非线性系统 物理 人工智能 量子力学 几何学
作者
Zhi‐Yong Zhang,Hui Zhang,Lisheng Zhang,Leilei Guo
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:492: 112415-112415 被引量:26
标识
DOI:10.1016/j.jcp.2023.112415
摘要

As a typical application of deep learning, physics-informed neural network (PINN) has been successfully used to find numerical solutions of partial differential equations (PDEs), but how to improve the limited accuracy is still a great challenge for PINN. In this work, we introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries or non-classical symmetries of PDEs are embedded into the loss function in PINN, to improve the accuracy of PINN for solving the forward and inverse problems of PDEs. We test the effectiveness of SPINN for the forward problem via two groups of ten independent numerical experiments using different numbers of collocation points and neurons per layer for the Korteweg-de Vries (KdV) equation, breaking soliton equation, heat equation, and potential Burgers equations respectively, and for the inverse problem by considering different layers and neurons as well as different numbers of training points with different levels of noise for the Burgers equation in potential form. The numerical results show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network, and in particular, exhibits superiorities than the PINN method and the two-stage PINN method of Lin and Chen by considering the Sawada-Kotera equation. Furthermore, we discuss the computational overhead of SPINN in terms of the relative computational cost to PINN and show that the training time of SPINN has no obvious increases, even less than PINN for certain cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liumj发布了新的文献求助30
1秒前
陈陈陈完成签到,获得积分10
1秒前
情怀应助ada采纳,获得10
2秒前
peaches发布了新的文献求助10
3秒前
斯文败类应助董耀文采纳,获得10
3秒前
4秒前
汉堡包应助威武的戎采纳,获得10
4秒前
聪明藏今完成签到,获得积分10
4秒前
7秒前
冷迎梦发布了新的文献求助10
8秒前
CL完成签到,获得积分10
10秒前
HW发布了新的文献求助10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
chenqi应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
田子廉完成签到,获得积分10
11秒前
11秒前
11秒前
汉堡包应助yyi1采纳,获得100
13秒前
斯文发糕发布了新的文献求助10
13秒前
万嘉俊发布了新的文献求助20
14秒前
peaches完成签到,获得积分20
15秒前
18秒前
18秒前
慈祥的夏岚完成签到,获得积分10
18秒前
20秒前
27完成签到,获得积分10
20秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898