Prediction of Retear After Arthroscopic Rotator Cuff Repair Based on Intraoperative Arthroscopic Images Using Deep Learning

医学 肩袖 磁共振成像 接收机工作特性 放射科 人工智能 核医学 外科 计算机科学 内科学
作者
Sung-Hyun Cho,Yang‐Soo Kim
出处
期刊:American Journal of Sports Medicine [SAGE Publishing]
卷期号:51 (11): 2824-2830 被引量:9
标识
DOI:10.1177/03635465231189201
摘要

Background: It is challenging to predict retear after arthroscopic rotator cuff repair (ARCR). The usefulness of arthroscopic intraoperative images as predictors of the ARCR prognosis has not been analyzed. Purpose: To evaluate the usefulness of arthroscopic images for the prediction of retear after ARCR using deep learning (DL) algorithms. Study Design: Cohort study (Diagnosis); Level of evidence, 2. Methods: In total, 1394 arthroscopic intraoperative images were retrospectively obtained from 580 patients. Repaired tendon integrity was evaluated using magnetic resonance imaging performed within 2 years after surgery. Images obtained immediately after ARCR were included. We used 3 DL architectures to predict retear based on arthroscopic images. Three pretrained DL algorithms (VGG16, DenseNet, and Xception) were used for transfer learning. Training and test sets were split into 8:2. Threefold stratified validation was used to fine-tune the hyperparameters using the training data set. The validation results of each fold were evaluated. The performance of each model in the test set was evaluated in terms of accuracy, area under the receiver operating characteristic curve (AUC), F1-score, sensitivity, and specificity. Results: In total, 1138 and 256 arthroscopic images were obtained from 514 patients and 66 patients in the nonretear and retear groups, respectively. The mean validation accuracy of each model was 83% for VGG16, 89% for Xception, and 91% for DenseNet. The accuracy for the test set was 76% for VGG16, 87% for Xception, and 91% for DenseNet. The AUC was highest for DenseNet (0.92); it was 0.83 for VGG16 and 0.91 for Xception. For the test set, the specificity and sensitivity were 0.93 and 0.84 for DenseNet, 0.89 and 0.84 for Xception, and 0.70 and 0.80 for VGG16, respectively. Conclusion: The application of DL algorithms to intraoperative arthroscopic images has demonstrated a high level of accuracy in predicting retear occurrences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭翔发布了新的文献求助10
刚刚
科研牛马完成签到,获得积分10
刚刚
阿治发布了新的文献求助10
1秒前
ZQ发布了新的文献求助10
2秒前
keliya完成签到 ,获得积分10
2秒前
小猪仔完成签到,获得积分20
2秒前
2秒前
4秒前
量子星尘发布了新的文献求助150
5秒前
Orange应助项南风采纳,获得10
6秒前
6秒前
我是老大应助QWE采纳,获得10
6秒前
科研通AI6应助dameng139采纳,获得10
6秒前
在水一方应助陈陈陈1采纳,获得10
6秒前
moon发布了新的文献求助10
8秒前
万能图书馆应助小猪仔采纳,获得10
8秒前
刘丽梅完成签到 ,获得积分0
9秒前
领导范儿应助lbc采纳,获得10
9秒前
9秒前
9秒前
9秒前
llt完成签到,获得积分10
10秒前
10秒前
勤耕苦读完成签到,获得积分10
13秒前
luo发布了新的文献求助10
15秒前
16秒前
小沐牧呀发布了新的文献求助10
16秒前
浮游应助halo采纳,获得10
17秒前
yang完成签到,获得积分10
18秒前
浮游应助睡觉的猫采纳,获得10
18秒前
热心的安梦完成签到,获得积分10
18秒前
Hello应助葛一豪采纳,获得10
19秒前
20秒前
猪猪hero发布了新的文献求助30
20秒前
20秒前
量子星尘发布了新的文献求助50
21秒前
22秒前
23秒前
24秒前
酷酷的冷玉完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112522
求助须知:如何正确求助?哪些是违规求助? 4320288
关于积分的说明 13461592
捐赠科研通 4151430
什么是DOI,文献DOI怎么找? 2274746
邀请新用户注册赠送积分活动 1276648
关于科研通互助平台的介绍 1214763