Interface engineering and oxygen vacancy of hollow/porous Co–CoO heterojunction nanoframes for high-activity electrocatalysis overall water splitting

过电位 异质结 电催化剂 析氧 煅烧 分解水 材料科学 空位缺陷 化学工程 氧气 纳米技术 催化作用 化学物理 化学 光催化 电极 光电子学 物理化学 结晶学 电化学 有机化学 冶金 工程类 生物化学
作者
Hui Feng,Dongxuan Guo,Dong‐Feng Chai,Wenzhi Zhang,Zhuanfang Zhang,Liming Bai,Jin Xing,Guohua Dong
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:51: 732-741 被引量:12
标识
DOI:10.1016/j.ijhydene.2023.10.190
摘要

Cobalt-based oxides are regarded as promising electrocatalysts in the field of overall water splitting ascribed to superior activity and desirable stability. Nevertheless, the poor electrical conductivity and insufficient active centers limit their development seriously. Herein, the hollow/porous Co–CoO nanoframes (denoted as Co–CoO NFs) with heterojunction and abundant oxygen vacancies have been constructed via continuous calcination and in-situ reduction strategies. Furthermore, the influence of heterostructure and oxygen vacancy on electrocatalytic activity is investigated systematically. The heterojunction interface formed by Co and CoO could expose more active sites and accelerate charge transfer. Besides, oxygen vacancy could regulate electronic structure, lowering the intermediate binding energy and reducing charge transfer impedance. Furthermore, the hollow/porous structure could increase the accessible internal and external surface area. As a result, Co–CoO-400 NFs exhibit prominent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) behavior, achieving the current density of −10 mA cm−2 and 10 mA cm−2 with the low overpotential of 103.0 and 276.0 mV, respectively, and the voltage required for overall water splitting is 1.54 V, surpassing the most reported Co-based electrocatalysts recently. Overall, this work provides an intellection and vision for designing dual-function electrocatalysts with controllable morphology, low energy consumption, and high activity, making a significant contribution for solving the future energy crisis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助暴发户采纳,获得10
刚刚
清秀幻珊完成签到,获得积分10
刚刚
1秒前
485613完成签到,获得积分10
2秒前
姜姜完成签到 ,获得积分10
2秒前
Pauline发布了新的文献求助10
2秒前
di发布了新的文献求助10
2秒前
顾矜应助额威风采纳,获得30
2秒前
星辰大海应助ssow采纳,获得10
3秒前
YuJianQiao完成签到,获得积分10
3秒前
小马甲应助qqqxl采纳,获得10
3秒前
Owen应助有魅力的超短裙采纳,获得10
4秒前
灵运完成签到,获得积分10
4秒前
王英龙发布了新的文献求助10
4秒前
小二郎应助qq大魔王采纳,获得10
4秒前
5秒前
龙行天下完成签到,获得积分10
5秒前
485613发布了新的文献求助10
5秒前
6秒前
Goodluck完成签到,获得积分10
6秒前
邱仇天完成签到,获得积分20
6秒前
等待的香魔完成签到,获得积分10
6秒前
杰瑞发布了新的文献求助10
7秒前
YuJianQiao发布了新的文献求助10
8秒前
Azad发布了新的文献求助100
8秒前
huluhulu完成签到,获得积分10
11秒前
合适依秋发布了新的文献求助10
11秒前
完美世界应助默默的白容采纳,获得10
12秒前
13秒前
科目三应助马宇驰采纳,获得10
13秒前
在水一方应助大猫采纳,获得30
14秒前
14秒前
14秒前
14秒前
15秒前
16秒前
17秒前
18秒前
科研通AI6应助di采纳,获得10
18秒前
二三发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708