Disrupted topologic efficiency of brain functional connectome in de novo Parkinson's disease with depression

神经科学 连接体 功能磁共振成像 帕金森病 心理学 静息状态功能磁共振成像 萧条(经济学) 海马旁回 功能连接 连接组学 疾病 医学 癫痫 内科学 颞叶 经济 宏观经济学
作者
Hui Wang,Xiaoyan Zhan,Jianxia Xu,Miao Yu,Zhiying Guo,Gaiyan Zhou,Jingru Ren,Ronggui Zhang,Weiguo Liu
出处
期刊:European Journal of Neuroscience [Wiley]
卷期号:58 (11): 4371-4383 被引量:1
标识
DOI:10.1111/ejn.16176
摘要

Abstract Growing evidence supports that depression in Parkinson's disease (PD) depends on disruptions in specific neural networks rather than regional dysfunction. According to the resting‐state functional magnetic resonance imaging data, the study attempted to decipher the alterations in the topological properties of brain networks in de novo depression in PD (DPD). The study also explored the neural network basis for depressive symptoms in PD. We recruited 20 DPD, 37 non‐depressed PD and 41 healthy controls (HC). The Graph theory and network‐based statistical methods helped analyse the topological properties of brain functional networks and anomalous subnetworks across these groups. The relationship between altered properties and depression severity was also investigated. DPD revealed significantly reduced nodal efficiency in the left superior temporal gyrus. Additionally, DPD decreased five hubs, primarily located in the temporal‐occipital cortex, and increased seven hubs, mainly distributed in the limbic cortico‐basal ganglia circuit. The betweenness centrality of the left Medio Ventral Occipital Cortex was positively associated with depressive scores in DPD. In contrast to HC, DPD had a multi‐connected subnetwork with significantly lower connectivity, primarily distributed in the visual, somatomotor, dorsal attention and default networks. Regional topological disruptions in the temporal‐occipital region are critical in the DPD neurological mechanism. It might suggest a potential network biomarker among newly diagnosed DPD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
暖羊羊Y完成签到 ,获得积分10
1秒前
木木完成签到,获得积分10
2秒前
一二完成签到,获得积分10
3秒前
舒心小凡完成签到,获得积分10
4秒前
teargasxq发布了新的文献求助10
5秒前
myl完成签到,获得积分10
5秒前
QINXD完成签到,获得积分10
5秒前
蓝岳洋完成签到,获得积分20
6秒前
GQ完成签到,获得积分10
6秒前
ruochenzu发布了新的文献求助10
6秒前
尚且发布了新的文献求助10
6秒前
7秒前
祖问筠完成签到,获得积分10
7秒前
小董不懂完成签到,获得积分10
7秒前
8秒前
十七完成签到,获得积分10
8秒前
LJR完成签到,获得积分10
8秒前
SciGPT应助蝈蝈采纳,获得10
8秒前
今后应助张艳梅采纳,获得10
9秒前
cdercder应助库里强采纳,获得10
9秒前
冬瓜有内涵呐完成签到,获得积分10
9秒前
欢喜念双完成签到,获得积分10
10秒前
SYLH应助木木采纳,获得10
10秒前
10秒前
Jaylou完成签到,获得积分10
12秒前
12秒前
12秒前
椒盐鲨鱼皮完成签到,获得积分10
12秒前
杨小黑完成签到,获得积分10
12秒前
zhixian完成签到,获得积分10
12秒前
shisong发布了新的文献求助10
13秒前
机灵的晓曼完成签到,获得积分10
13秒前
多吃香菜完成签到,获得积分10
13秒前
李演员完成签到,获得积分10
13秒前
荔枝发布了新的文献求助10
14秒前
haifenghou发布了新的文献求助10
14秒前
布朗熊发布了新的文献求助20
14秒前
bkagyin应助我的文献采纳,获得10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834097
求助须知:如何正确求助?哪些是违规求助? 3376554
关于积分的说明 10493831
捐赠科研通 3096024
什么是DOI,文献DOI怎么找? 1704828
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868