Deep neural network potential for simulating hydrogen blistering in tungsten

水泡 材料科学 分子动力学 化学物理 星团(航天器) 冶金 计算化学 复合材料 化学 有机化学 计算机科学 程序设计语言
作者
Xiaoyang Wang,Yinan Wang,Ke Xu,Fu‐Zhi Dai,Haifeng Liu,Guang-Hong Lü,Handong Wang
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (9) 被引量:12
标识
DOI:10.1103/physrevmaterials.7.093601
摘要

Tungsten is a promising candidate for the plasma-facing material in fusion energy facilities, however, the low-energy, high-flux hydrogen plasma causes severe blistering in tungsten, which gives rise to safety concerns. By far, the formation mechanism of intragranular hydrogen blisters is still unclear. Large-scale atomistic simulations are crucial for improving the understanding, however, the available empirical interatomic potentials are mostly defective in predicting the formation of hydrogen self-clusters in tungsten, thus may lead to wrong blister formation mechanisms. In this work, we develop a machine-learning potential, DP-WH, for the tungsten-hydrogen binary system based on the Deep Potential method. We demonstrate that the DP-WH potential is able to describe, as accurately as ab initio calculations, the basic properties of bcc tungsten, the solute hydrogen properties in tungsten, adsorption and migration of hydrogen on tungsten free surfaces, interactions between hydrogen atoms and vacancy, dislocations, the interaction between neighboring interstitial hydrogen atoms, and the formation energy of H self-clusters. By using DP-WH, we perform nanosecond-long molecular dynamics simulations and report the formation of planar self-cluster of tetrahedral-interstitial-site hydrogen atoms normal to ${001}$ tungsten planes at a hydrogen concentration of $\ensuremath{\approx}10$ at.%. This form of the H self-cluster is highly possible to be the early nucleates of the crack-shaped H blisters observed in recent experiments. The DP-WH is thus proven as a good candidate potential for the atomistic simulations to unveil the formation mechanisms of the intragranular hydrogen blisters in tungsten under the relevant working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zeee应助单纯的思松采纳,获得10
刚刚
lll完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
求助人员发布了新的文献求助10
2秒前
3秒前
ajjdnd发布了新的文献求助10
5秒前
orixero应助Chase采纳,获得10
5秒前
熙梓日记完成签到,获得积分10
6秒前
DDDSK发布了新的文献求助30
6秒前
英俊的铭应助zslf采纳,获得10
6秒前
Twonej应助矮小的断秋采纳,获得20
7秒前
月Y完成签到 ,获得积分10
7秒前
科研通AI2S应助阿正嗖啪采纳,获得10
8秒前
8秒前
yznfly举报123求助涉嫌违规
8秒前
ossinu发布了新的文献求助10
9秒前
Sea完成签到,获得积分10
9秒前
YOUNG发布了新的文献求助10
9秒前
10秒前
major完成签到 ,获得积分20
10秒前
在水一方应助wywy采纳,获得10
11秒前
眼睛大羽毛完成签到,获得积分10
12秒前
啊懂发布了新的文献求助10
12秒前
13秒前
zzzz完成签到,获得积分10
13秒前
123完成签到,获得积分10
15秒前
无名发布了新的文献求助10
16秒前
bkagyin应助柚子采纳,获得10
16秒前
16秒前
蟋蟀狂舞发布了新的文献求助10
16秒前
乐空思应助耳东采纳,获得50
17秒前
HH完成签到,获得积分10
17秒前
18秒前
Mm驳回了慕青应助
18秒前
18秒前
zslf发布了新的文献求助10
19秒前
Charlie完成签到 ,获得积分10
19秒前
科研通AI6应助豆豆采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643294
求助须知:如何正确求助?哪些是违规求助? 4760914
关于积分的说明 15020418
捐赠科研通 4801640
什么是DOI,文献DOI怎么找? 2566917
邀请新用户注册赠送积分活动 1524783
关于科研通互助平台的介绍 1484355